-
Something wrong with this record ?
Autophagic degradation of the inhibitory p53 isoform Δ133p53α as a regulatory mechanism for p53-mediated senescence
I. Horikawa, K. Fujita, LM. Jenkins, Y. Hiyoshi, AM. Mondal, B. Vojtesek, DP. Lane, E. Appella, CC. Harris,
Language English Country England, Great Britain
Document type Journal Article, Research Support, N.I.H., Intramural, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 2010
Nature Open Access
from 2010-12-01
PubMed Central
from 2012
Europe PubMed Central
from 2012
ProQuest Central
from 2010-01-01
Medline Complete (EBSCOhost)
from 2012-11-01
Health & Medicine (ProQuest)
from 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2010
Springer Nature OA/Free Journals
from 2010-12-01
PubMed
25144556
DOI
10.1038/ncomms5706
Knihovny.cz E-resources
- MeSH
- Adaptor Proteins, Signal Transducing genetics metabolism MeSH
- Androstadienes pharmacology MeSH
- Autophagy drug effects physiology MeSH
- Cycloheximide pharmacology MeSH
- Fibroblasts drug effects metabolism MeSH
- Gene Knockdown Techniques MeSH
- Cells, Cultured MeSH
- Humans MeSH
- RNA, Small Interfering MeSH
- Membrane Proteins genetics metabolism MeSH
- Tumor Suppressor Protein p53 genetics metabolism MeSH
- Protein Isoforms metabolism MeSH
- Microtubule-Associated Proteins genetics metabolism MeSH
- Apoptosis Regulatory Proteins genetics metabolism MeSH
- Cellular Senescence physiology MeSH
- Ubiquitin-Protein Ligases genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Intramural MeSH
Δ133p53α, a p53 isoform that can inhibit full-length p53, is downregulated at replicative senescence in a manner independent of mRNA regulation and proteasome-mediated degradation. Here we demonstrate that, unlike full-length p53, Δ133p53α is degraded by autophagy during replicative senescence. Pharmacological inhibition of autophagy restores Δ133p53α expression levels in replicatively senescent fibroblasts, without affecting full-length p53. The siRNA-mediated knockdown of pro-autophagic proteins (ATG5, ATG7 and Beclin-1) also restores Δ133p53α expression. The chaperone-associated E3 ubiquitin ligase STUB1, which is known to regulate autophagy, interacts with Δ133p53α and is downregulated at replicative senescence. The siRNA knockdown of STUB1 in proliferating, early-passage fibroblasts induces the autophagic degradation of Δ133p53α and thereby induces senescence. Upon replicative senescence or STUB1 knockdown, Δ133p53α is recruited to autophagosomes, consistent with its autophagic degradation. This study reveals that STUB1 is an endogenous regulator of Δ133p53α degradation and senescence, and identifies a p53 isoform-specific protein turnover mechanism that orchestrates p53-mediated senescence.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16010747
- 003
- CZ-PrNML
- 005
- 20160415123906.0
- 007
- ta
- 008
- 160408s2014 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/ncomms5706 $2 doi
- 024 7_
- $a 10.1038/ncomms5706 $2 doi
- 035 __
- $a (PubMed)25144556
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Horikawa, Izumi $u 1] Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892-4258, USA [2].
- 245 10
- $a Autophagic degradation of the inhibitory p53 isoform Δ133p53α as a regulatory mechanism for p53-mediated senescence / $c I. Horikawa, K. Fujita, LM. Jenkins, Y. Hiyoshi, AM. Mondal, B. Vojtesek, DP. Lane, E. Appella, CC. Harris,
- 520 9_
- $a Δ133p53α, a p53 isoform that can inhibit full-length p53, is downregulated at replicative senescence in a manner independent of mRNA regulation and proteasome-mediated degradation. Here we demonstrate that, unlike full-length p53, Δ133p53α is degraded by autophagy during replicative senescence. Pharmacological inhibition of autophagy restores Δ133p53α expression levels in replicatively senescent fibroblasts, without affecting full-length p53. The siRNA-mediated knockdown of pro-autophagic proteins (ATG5, ATG7 and Beclin-1) also restores Δ133p53α expression. The chaperone-associated E3 ubiquitin ligase STUB1, which is known to regulate autophagy, interacts with Δ133p53α and is downregulated at replicative senescence. The siRNA knockdown of STUB1 in proliferating, early-passage fibroblasts induces the autophagic degradation of Δ133p53α and thereby induces senescence. Upon replicative senescence or STUB1 knockdown, Δ133p53α is recruited to autophagosomes, consistent with its autophagic degradation. This study reveals that STUB1 is an endogenous regulator of Δ133p53α degradation and senescence, and identifies a p53 isoform-specific protein turnover mechanism that orchestrates p53-mediated senescence.
- 650 _2
- $a adaptorové proteiny signální transdukční $x genetika $x metabolismus $7 D048868
- 650 _2
- $a androstadieny $x farmakologie $7 D000730
- 650 _2
- $a proteiny regulující apoptózu $x genetika $x metabolismus $7 D051017
- 650 _2
- $a autofagie $x účinky léků $x fyziologie $7 D001343
- 650 _2
- $a stárnutí buněk $x fyziologie $7 D016922
- 650 _2
- $a kultivované buňky $7 D002478
- 650 _2
- $a cykloheximid $x farmakologie $7 D003513
- 650 _2
- $a fibroblasty $x účinky léků $x metabolismus $7 D005347
- 650 _2
- $a genový knockdown $7 D055785
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a membránové proteiny $x genetika $x metabolismus $7 D008565
- 650 _2
- $a proteiny asociované s mikrotubuly $x genetika $x metabolismus $7 D008869
- 650 _2
- $a protein - isoformy $x metabolismus $7 D020033
- 650 _2
- $a malá interferující RNA $7 D034741
- 650 _2
- $a nádorový supresorový protein p53 $x genetika $x metabolismus $7 D016159
- 650 _2
- $a ubikvitinligasy $x genetika $x metabolismus $7 D044767
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Intramural $7 D052060
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Fujita, Kaori $u 1] Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892-4258, USA [2] [3].
- 700 1_
- $a Jenkins, Lisa M Miller $u Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892-4258, USA.
- 700 1_
- $a Hiyoshi, Yukiharu $u Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892-4258, USA.
- 700 1_
- $a Mondal, Abdul M $u Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892-4258, USA.
- 700 1_
- $a Vojtesek, Borivoj $u Regional Centre for Applied and Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno 65653, Czech Republic.
- 700 1_
- $a Lane, David P $u Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
- 700 1_
- $a Appella, Ettore $u Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892-4258, USA. $7 gn_A_00007825
- 700 1_
- $a Harris, Curtis C $u Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892-4258, USA.
- 773 0_
- $w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 5, č. - (2014), s. 4706
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25144556 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20160415123951 $b ABA008
- 999 __
- $a ok $b bmc $g 1114176 $s 935115
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 5 $c - $d 4706 $e 20140821 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
- LZP __
- $a Pubmed-20160408