-
Je něco špatně v tomto záznamu ?
Estimating the baseline and threshold for the incidence of diseases with seasonal and long-term trends
B. Procházka, J. Kynčl
Jazyk angličtina Země Česko
Typ dokumentu časopisecké články, práce podpořená grantem
Digitální knihovna NLK
Zdroj
NLK
Free Medical Journals
od 2004
ProQuest Central
od 2009-03-01 do Před 6 měsíci
Medline Complete (EBSCOhost)
od 2006-03-01 do Před 6 měsíci
Nursing & Allied Health Database (ProQuest)
od 2009-03-01 do Před 6 měsíci
Health & Medicine (ProQuest)
od 2009-03-01 do Před 6 měsíci
Public Health Database (ProQuest)
od 2009-03-01 do Před 6 měsíci
ROAD: Directory of Open Access Scholarly Resources
od 1993
- MeSH
- epidemiologické metody MeSH
- epidemiologie * MeSH
- incidence MeSH
- lidé MeSH
- roční období * MeSH
- statistické modely * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In epidemiology, it is very important to estimate the baseline incidence of infectious diseases. From this baseline, the epidemic threshold can be derived as a clue to recognize an excess incidence, i.e. to detect an epidemic by mathematical methods. Nevertheless, a problem is posed by the fact that the incidence may vary during the year, as a rule, in a season dependent manner. To model the incidence of a disease, some authors use seasonal trend models. For instance, Serfling applies the sine function with a phase shift and amplitude. A similar model based on the analysis of variance with kernel smoothing and Serfling's higher order models, i.e. models composed of multiple sine-cosine function pairs with a variably long period, will be presented below. Serfling's model uses a long-term linear trend, but the linearity may not be always acceptable. Therefore, a more complex, long-term trend estimation will also be addressed, using different smoothing methods. In addition, the issue of the time unit (mostly a week) used in describing the incidence is discussed.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16013720
- 003
- CZ-PrNML
- 005
- 20160531084039.0
- 007
- ta
- 008
- 160506s2015 xr d f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.21101/cejph.a4392 $2 doi
- 035 __
- $a (PubMed)26841150
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Procházka, Bohumír, $u Department of Biostatistics, National Institute of Public Health, Prague, Czech Republic $d 1953-2017 $7 xx0075077
- 245 10
- $a Estimating the baseline and threshold for the incidence of diseases with seasonal and long-term trends / $c B. Procházka, J. Kynčl
- 520 9_
- $a In epidemiology, it is very important to estimate the baseline incidence of infectious diseases. From this baseline, the epidemic threshold can be derived as a clue to recognize an excess incidence, i.e. to detect an epidemic by mathematical methods. Nevertheless, a problem is posed by the fact that the incidence may vary during the year, as a rule, in a season dependent manner. To model the incidence of a disease, some authors use seasonal trend models. For instance, Serfling applies the sine function with a phase shift and amplitude. A similar model based on the analysis of variance with kernel smoothing and Serfling's higher order models, i.e. models composed of multiple sine-cosine function pairs with a variably long period, will be presented below. Serfling's model uses a long-term linear trend, but the linearity may not be always acceptable. Therefore, a more complex, long-term trend estimation will also be addressed, using different smoothing methods. In addition, the issue of the time unit (mostly a week) used in describing the incidence is discussed.
- 650 _2
- $a epidemiologické metody $7 D004812
- 650 12
- $a epidemiologie $7 D004813
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a incidence $7 D015994
- 650 12
- $a statistické modely $7 D015233
- 650 12
- $a roční období $7 D012621
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kynčl, Jan $u Department of Infectious Diseases Epidemiology, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic $7 jn20001227249
- 773 0_
- $w MED00001083 $t Central European journal of public health $x 1210-7778 $g Roč. 23, č. 4 (2015), s. 352-359
- 856 41
- $u http://apps.szu.cz/svi/cejph/ $y domovská stránka časopisu
- 910 __
- $a ABA008 $b B 1829 $c 562 $y 4 $z 0
- 990 __
- $a 20160506 $b ABA008
- 991 __
- $a 20160518102642 $b ABA008
- 999 __
- $a ok $b bmc $g 1126029 $s 938132
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 23 $c 4 $d 352-359 $i 1210-7778 $m Central European Journal of Public Health $n Cent. Eur. J. Public Health $x MED00001083
- LZP __
- $b NLK118 $a Pubmed-20160506