Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Estimating the baseline and threshold for the incidence of diseases with seasonal and long-term trends

B. Procházka, J. Kynčl

. 2015 ; 23 (4) : 352-359.

Language English Country Czech Republic

Document type Journal Article, Research Support, Non-U.S. Gov't

In epidemiology, it is very important to estimate the baseline incidence of infectious diseases. From this baseline, the epidemic threshold can be derived as a clue to recognize an excess incidence, i.e. to detect an epidemic by mathematical methods. Nevertheless, a problem is posed by the fact that the incidence may vary during the year, as a rule, in a season dependent manner. To model the incidence of a disease, some authors use seasonal trend models. For instance, Serfling applies the sine function with a phase shift and amplitude. A similar model based on the analysis of variance with kernel smoothing and Serfling's higher order models, i.e. models composed of multiple sine-cosine function pairs with a variably long period, will be presented below. Serfling's model uses a long-term linear trend, but the linearity may not be always acceptable. Therefore, a more complex, long-term trend estimation will also be addressed, using different smoothing methods. In addition, the issue of the time unit (mostly a week) used in describing the incidence is discussed.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16013720
003      
CZ-PrNML
005      
20160531084039.0
007      
ta
008      
160506s2015 xr d f 000 0|eng||
009      
AR
024    7_
$a 10.21101/cejph.a4392 $2 doi
035    __
$a (PubMed)26841150
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xr
100    1_
$a Procházka, Bohumír, $u Department of Biostatistics, National Institute of Public Health, Prague, Czech Republic $d 1953-2017 $7 xx0075077
245    10
$a Estimating the baseline and threshold for the incidence of diseases with seasonal and long-term trends / $c B. Procházka, J. Kynčl
520    9_
$a In epidemiology, it is very important to estimate the baseline incidence of infectious diseases. From this baseline, the epidemic threshold can be derived as a clue to recognize an excess incidence, i.e. to detect an epidemic by mathematical methods. Nevertheless, a problem is posed by the fact that the incidence may vary during the year, as a rule, in a season dependent manner. To model the incidence of a disease, some authors use seasonal trend models. For instance, Serfling applies the sine function with a phase shift and amplitude. A similar model based on the analysis of variance with kernel smoothing and Serfling's higher order models, i.e. models composed of multiple sine-cosine function pairs with a variably long period, will be presented below. Serfling's model uses a long-term linear trend, but the linearity may not be always acceptable. Therefore, a more complex, long-term trend estimation will also be addressed, using different smoothing methods. In addition, the issue of the time unit (mostly a week) used in describing the incidence is discussed.
650    _2
$a epidemiologické metody $7 D004812
650    12
$a epidemiologie $7 D004813
650    _2
$a lidé $7 D006801
650    _2
$a incidence $7 D015994
650    12
$a statistické modely $7 D015233
650    12
$a roční období $7 D012621
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kynčl, Jan $u Department of Infectious Diseases Epidemiology, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic $7 jn20001227249
773    0_
$w MED00001083 $t Central European journal of public health $x 1210-7778 $g Roč. 23, č. 4 (2015), s. 352-359
856    41
$u http://apps.szu.cz/svi/cejph/ $y domovská stránka časopisu
910    __
$a ABA008 $b B 1829 $c 562 $y 4 $z 0
990    __
$a 20160506 $b ABA008
991    __
$a 20160518102642 $b ABA008
999    __
$a ok $b bmc $g 1126029 $s 938132
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 23 $c 4 $d 352-359 $i 1210-7778 $m Central European Journal of Public Health $n Cent. Eur. J. Public Health $x MED00001083
LZP    __
$b NLK118 $a Pubmed-20160506

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...