-
Je něco špatně v tomto záznamu ?
Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA
H. Yamamoto, M. Collier, J. Loerke, J. Ismer, A. Schmidt, T. Hilal, T. Sprink, K. Yamamoto, T. Mielke, J. Bürger, TR. Shaikh, M. Dabrowski, PW. Hildebrand, P. Scheerer, CM. Spahn,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1982 do Před 1 rokem
PubMed Central
od 1982
Europe PubMed Central
od 1982 do Před 1 rokem
Open Access Digital Library
od 1997-01-01
Open Access Digital Library
od 1997-01-01
Medline Complete (EBSCOhost)
od 1997-01-02 do Před 1 rokem
Wiley Free Content
od 1997 do Před 1 rokem
PubMed
26604301
DOI
10.15252/embj.201592469
Knihovny.cz E-zdroje
- MeSH
- hepatitida C metabolismus MeSH
- IRES * MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- podjednotky ribozomu chemie MeSH
- RNA virová chemie MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- simulace molekulového dockingu MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Internal ribosomal entry sites (IRESs) are structured cis-acting RNAs that drive an alternative, cap-independent translation initiation pathway. They are used by many viruses to hijack the translational machinery of the host cell. IRESs facilitate translation initiation by recruiting and actively manipulating the eukaryotic ribosome using only a subset of canonical initiation factor and IRES transacting factors. Here we present cryo-EM reconstructions of the ribosome 80S- and 40S-bound Hepatitis C Virus (HCV) IRES. The presence of four subpopulations for the 80S•HCV IRES complex reveals dynamic conformational modes of the complex. At a global resolution of 3.9 Å for the most stable complex, a derived atomic model reveals a complex fold of the IRES RNA and molecular details of its interaction with the ribosome. The comparison of obtained structures explains how a modular architecture facilitates mRNA loading and tRNA binding to the P-site. This information provides the structural foundation for understanding the mechanism of HCV IRES RNA-driven translation initiation.
Institut für Medizinische Physik und Biophysik Charité Universitätsmedizin Berlin Germany
Structural Biology Programme CEITEC Masaryk University Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16020120
- 003
- CZ-PrNML
- 005
- 20160805112244.0
- 007
- ta
- 008
- 160722s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.15252/embj.201592469 $2 doi
- 024 7_
- $a 10.15252/embj.201592469 $2 doi
- 035 __
- $a (PubMed)26604301
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Yamamoto, Hiroshi $u Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany.
- 245 10
- $a Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA / $c H. Yamamoto, M. Collier, J. Loerke, J. Ismer, A. Schmidt, T. Hilal, T. Sprink, K. Yamamoto, T. Mielke, J. Bürger, TR. Shaikh, M. Dabrowski, PW. Hildebrand, P. Scheerer, CM. Spahn,
- 520 9_
- $a Internal ribosomal entry sites (IRESs) are structured cis-acting RNAs that drive an alternative, cap-independent translation initiation pathway. They are used by many viruses to hijack the translational machinery of the host cell. IRESs facilitate translation initiation by recruiting and actively manipulating the eukaryotic ribosome using only a subset of canonical initiation factor and IRES transacting factors. Here we present cryo-EM reconstructions of the ribosome 80S- and 40S-bound Hepatitis C Virus (HCV) IRES. The presence of four subpopulations for the 80S•HCV IRES complex reveals dynamic conformational modes of the complex. At a global resolution of 3.9 Å for the most stable complex, a derived atomic model reveals a complex fold of the IRES RNA and molecular details of its interaction with the ribosome. The comparison of obtained structures explains how a modular architecture facilitates mRNA loading and tRNA binding to the P-site. This information provides the structural foundation for understanding the mechanism of HCV IRES RNA-driven translation initiation.
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a sekvence nukleotidů $7 D001483
- 650 _2
- $a hepatitida C $x metabolismus $7 D006526
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a IRES $7 D000067556
- 650 _2
- $a simulace molekulového dockingu $7 D062105
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a RNA virová $x chemie $7 D012367
- 650 _2
- $a podjednotky ribozomu $x chemie $7 D054657
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Collier, Marianne $u Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany.
- 700 1_
- $a Loerke, Justus $u Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany.
- 700 1_
- $a Ismer, Jochen $u Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany.
- 700 1_
- $a Schmidt, Andrea $u Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany.
- 700 1_
- $a Hilal, Tarek $u Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany.
- 700 1_
- $a Sprink, Thiemo $u Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany.
- 700 1_
- $a Yamamoto, Kaori $u Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany.
- 700 1_
- $a Mielke, Thorsten $u Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- 700 1_
- $a Bürger, Jörg $u Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany UltraStrukturNetzwerk, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- 700 1_
- $a Shaikh, Tanvir R $u Structural Biology Programme, CEITEC, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Dabrowski, Marylena $u Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany.
- 700 1_
- $a Hildebrand, Peter W $u Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany.
- 700 1_
- $a Scheerer, Patrick $u Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany.
- 700 1_
- $a Spahn, Christian M T $u Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin, Berlin, Germany christian.spahn@charite.de.
- 773 0_
- $w MED00001509 $t The EMBO journal $x 1460-2075 $g Roč. 34, č. 24 (2015), s. 3042-58
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26604301 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160722 $b ABA008
- 991 __
- $a 20160805112516 $b ABA008
- 999 __
- $a ok $b bmc $g 1154790 $s 944648
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 34 $c 24 $d 3042-58 $e 20151124 $i 1460-2075 $m EMBO journal $n EMBO J $x MED00001509
- LZP __
- $a Pubmed-20160722