• Je něco špatně v tomto záznamu ?

Calculation of cellular S-values using Geant4-DNA: The effect of cell geometry

M. Šefl, S. Incerti, G. Papamichael, D. Emfietzoglou,

. 2015 ; 104 (-) : 113-23. [pub] 20150623

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16020566

PURPOSE: Geant4-DNA is used to calculate S-values for different subcellular distributions of low-energy electron sources in various cell geometries. METHOD: Calculations of cellular S-values for monoenergetic electron sources with energy from 1 to 100 keV and the Auger-electron emitting radionuclides Tc-99m, In-111, and I-125 have been made using the Geant4 Monte Carlo toolkit. The Geant4-DNA low-energy extension is employed for simulating collision-by-collision the complete slowing-down of electron tracks (down to 8 eV) in liquid water, used as a surrogate of human cells. The effect of cell geometry on S-values is examined by simulating electron tracks within different cell geometries, namely, a spherical, two ellipsoidal, and an irregular shape, all having equal cellular and nuclear volumes. Algorithms for randomly sampling the volume of the nucleus, cytoplasm, surface, and whole cell for each cell phantom are presented. RESULTS: Differences between Geant4-DNA and MIRD database up to 50% were found, although, for the present radionuclides, they mostly remain below 10%. For most source-target combinations the S-values for the spherical cell geometry were found to be within 20% of those for the ellipsoidal cell geometries, with a maximum deviation of 32%. Differences between the spherical and irregular geometries are generally larger reaching 100-300%. Most sensitive to the cell geometry is the absorbed dose to the nucleus when the source is localized on the cell surface. Interestingly, two published AAPM spectra for I-125 yield noticeable differences (up to 19%) in cellular S-values. CONCLUSION: Monte Carlo simulations of cellular S-values with Geant4-DNA reveal that, for the examined radionuclides, the widely used approximation of spherical cells is reasonably accurate (within 20-30%) even for ellipsoidal geometries. For irregular cell geometries the spherical approximation should be used with caution because, as in the present example, it may lead to erroneous results for the nuclear dose for the commonly encountered situation where the source is localized to the cell surface.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16020566
003      
CZ-PrNML
005      
20160725102713.0
007      
ta
008      
160722s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.apradiso.2015.06.027 $2 doi
024    7_
$a 10.1016/j.apradiso.2015.06.027 $2 doi
035    __
$a (PubMed)26159660
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Šefl, Martin $u Medical Physics Laboratory, University of Ioannina Medical School, 45110 Ioannina, Greece; Department of Dosimetry and Application of Ionizing Radiation, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 110 00 Prague, Czech Republic.
245    10
$a Calculation of cellular S-values using Geant4-DNA: The effect of cell geometry / $c M. Šefl, S. Incerti, G. Papamichael, D. Emfietzoglou,
520    9_
$a PURPOSE: Geant4-DNA is used to calculate S-values for different subcellular distributions of low-energy electron sources in various cell geometries. METHOD: Calculations of cellular S-values for monoenergetic electron sources with energy from 1 to 100 keV and the Auger-electron emitting radionuclides Tc-99m, In-111, and I-125 have been made using the Geant4 Monte Carlo toolkit. The Geant4-DNA low-energy extension is employed for simulating collision-by-collision the complete slowing-down of electron tracks (down to 8 eV) in liquid water, used as a surrogate of human cells. The effect of cell geometry on S-values is examined by simulating electron tracks within different cell geometries, namely, a spherical, two ellipsoidal, and an irregular shape, all having equal cellular and nuclear volumes. Algorithms for randomly sampling the volume of the nucleus, cytoplasm, surface, and whole cell for each cell phantom are presented. RESULTS: Differences between Geant4-DNA and MIRD database up to 50% were found, although, for the present radionuclides, they mostly remain below 10%. For most source-target combinations the S-values for the spherical cell geometry were found to be within 20% of those for the ellipsoidal cell geometries, with a maximum deviation of 32%. Differences between the spherical and irregular geometries are generally larger reaching 100-300%. Most sensitive to the cell geometry is the absorbed dose to the nucleus when the source is localized on the cell surface. Interestingly, two published AAPM spectra for I-125 yield noticeable differences (up to 19%) in cellular S-values. CONCLUSION: Monte Carlo simulations of cellular S-values with Geant4-DNA reveal that, for the examined radionuclides, the widely used approximation of spherical cells is reasonably accurate (within 20-30%) even for ellipsoidal geometries. For irregular cell geometries the spherical approximation should be used with caution because, as in the present example, it may lead to erroneous results for the nuclear dose for the commonly encountered situation where the source is localized to the cell surface.
650    12
$a absorpce radiace $7 D065638
650    12
$a velikost buňky $7 D048429
650    _2
$a viabilita buněk $x účinky léků $x fyziologie $7 D002470
650    _2
$a počítačová simulace $7 D003198
650    _2
$a vztah dávky záření a odpovědi $7 D004307
650    _2
$a elektrony $7 D004583
650    _2
$a lidé $7 D006801
650    12
$a biologické modely $7 D008954
650    12
$a statistické modely $7 D015233
650    _2
$a metoda Monte Carlo $7 D009010
650    _2
$a dávka záření $7 D011829
650    _2
$a radiometrie $x metody $7 D011874
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Incerti, Sébastien $u Université de Bordeaux, Centre d'Etudes Nucléaires de Bordeaux-Gradignan, CENBG, Chemin du solarium, 33175 Gradignan, France; CNRS/IN2P3, Centre d'Etudes Nucléaires de Bordeaux-Gradignan, CENBG, Chemin du solarium, 33175 Gradignan, France.
700    1_
$a Papamichael, George $u Medical Physics Laboratory, University of Ioannina Medical School, 45110 Ioannina, Greece; Division of Applied Statistics, Institute of Labor (GSEE), 10681 Athens, Greece.
700    1_
$a Emfietzoglou, Dimitris $u Medical Physics Laboratory, University of Ioannina Medical School, 45110 Ioannina, Greece. Electronic address: demfietz@cc.uoi.gr.
773    0_
$w MED00000499 $t Applied radiation and isotopes including data, instrumentation and methods for use in agriculture, industry and medicine $x 1872-9800 $g Roč. 104, č. - (2015), s. 113-23
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26159660 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20160725102931 $b ABA008
999    __
$a ok $b bmc $g 1155236 $s 945094
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 104 $c - $d 113-23 $e 20150623 $i 1872-9800 $m Applied radiation and isotopes $n Appl Radiat Isot $x MED00000499
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace