-
Je něco špatně v tomto záznamu ?
Calculation of cellular S-values using Geant4-DNA: The effect of cell geometry
M. Šefl, S. Incerti, G. Papamichael, D. Emfietzoglou,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- absorpce radiace * MeSH
- biologické modely * MeSH
- dávka záření MeSH
- elektrony MeSH
- lidé MeSH
- metoda Monte Carlo MeSH
- počítačová simulace MeSH
- radiometrie metody MeSH
- statistické modely * MeSH
- velikost buňky * MeSH
- viabilita buněk účinky léků fyziologie MeSH
- vztah dávky záření a odpovědi MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PURPOSE: Geant4-DNA is used to calculate S-values for different subcellular distributions of low-energy electron sources in various cell geometries. METHOD: Calculations of cellular S-values for monoenergetic electron sources with energy from 1 to 100 keV and the Auger-electron emitting radionuclides Tc-99m, In-111, and I-125 have been made using the Geant4 Monte Carlo toolkit. The Geant4-DNA low-energy extension is employed for simulating collision-by-collision the complete slowing-down of electron tracks (down to 8 eV) in liquid water, used as a surrogate of human cells. The effect of cell geometry on S-values is examined by simulating electron tracks within different cell geometries, namely, a spherical, two ellipsoidal, and an irregular shape, all having equal cellular and nuclear volumes. Algorithms for randomly sampling the volume of the nucleus, cytoplasm, surface, and whole cell for each cell phantom are presented. RESULTS: Differences between Geant4-DNA and MIRD database up to 50% were found, although, for the present radionuclides, they mostly remain below 10%. For most source-target combinations the S-values for the spherical cell geometry were found to be within 20% of those for the ellipsoidal cell geometries, with a maximum deviation of 32%. Differences between the spherical and irregular geometries are generally larger reaching 100-300%. Most sensitive to the cell geometry is the absorbed dose to the nucleus when the source is localized on the cell surface. Interestingly, two published AAPM spectra for I-125 yield noticeable differences (up to 19%) in cellular S-values. CONCLUSION: Monte Carlo simulations of cellular S-values with Geant4-DNA reveal that, for the examined radionuclides, the widely used approximation of spherical cells is reasonably accurate (within 20-30%) even for ellipsoidal geometries. For irregular cell geometries the spherical approximation should be used with caution because, as in the present example, it may lead to erroneous results for the nuclear dose for the commonly encountered situation where the source is localized to the cell surface.
Division of Applied Statistics Institute of Labor 10681 Athens Greece
Medical Physics Laboratory University of Ioannina Medical School 45110 Ioannina Greece
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16020566
- 003
- CZ-PrNML
- 005
- 20160725102713.0
- 007
- ta
- 008
- 160722s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.apradiso.2015.06.027 $2 doi
- 024 7_
- $a 10.1016/j.apradiso.2015.06.027 $2 doi
- 035 __
- $a (PubMed)26159660
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Šefl, Martin $u Medical Physics Laboratory, University of Ioannina Medical School, 45110 Ioannina, Greece; Department of Dosimetry and Application of Ionizing Radiation, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 110 00 Prague, Czech Republic.
- 245 10
- $a Calculation of cellular S-values using Geant4-DNA: The effect of cell geometry / $c M. Šefl, S. Incerti, G. Papamichael, D. Emfietzoglou,
- 520 9_
- $a PURPOSE: Geant4-DNA is used to calculate S-values for different subcellular distributions of low-energy electron sources in various cell geometries. METHOD: Calculations of cellular S-values for monoenergetic electron sources with energy from 1 to 100 keV and the Auger-electron emitting radionuclides Tc-99m, In-111, and I-125 have been made using the Geant4 Monte Carlo toolkit. The Geant4-DNA low-energy extension is employed for simulating collision-by-collision the complete slowing-down of electron tracks (down to 8 eV) in liquid water, used as a surrogate of human cells. The effect of cell geometry on S-values is examined by simulating electron tracks within different cell geometries, namely, a spherical, two ellipsoidal, and an irregular shape, all having equal cellular and nuclear volumes. Algorithms for randomly sampling the volume of the nucleus, cytoplasm, surface, and whole cell for each cell phantom are presented. RESULTS: Differences between Geant4-DNA and MIRD database up to 50% were found, although, for the present radionuclides, they mostly remain below 10%. For most source-target combinations the S-values for the spherical cell geometry were found to be within 20% of those for the ellipsoidal cell geometries, with a maximum deviation of 32%. Differences between the spherical and irregular geometries are generally larger reaching 100-300%. Most sensitive to the cell geometry is the absorbed dose to the nucleus when the source is localized on the cell surface. Interestingly, two published AAPM spectra for I-125 yield noticeable differences (up to 19%) in cellular S-values. CONCLUSION: Monte Carlo simulations of cellular S-values with Geant4-DNA reveal that, for the examined radionuclides, the widely used approximation of spherical cells is reasonably accurate (within 20-30%) even for ellipsoidal geometries. For irregular cell geometries the spherical approximation should be used with caution because, as in the present example, it may lead to erroneous results for the nuclear dose for the commonly encountered situation where the source is localized to the cell surface.
- 650 12
- $a absorpce radiace $7 D065638
- 650 12
- $a velikost buňky $7 D048429
- 650 _2
- $a viabilita buněk $x účinky léků $x fyziologie $7 D002470
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a vztah dávky záření a odpovědi $7 D004307
- 650 _2
- $a elektrony $7 D004583
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a biologické modely $7 D008954
- 650 12
- $a statistické modely $7 D015233
- 650 _2
- $a metoda Monte Carlo $7 D009010
- 650 _2
- $a dávka záření $7 D011829
- 650 _2
- $a radiometrie $x metody $7 D011874
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Incerti, Sébastien $u Université de Bordeaux, Centre d'Etudes Nucléaires de Bordeaux-Gradignan, CENBG, Chemin du solarium, 33175 Gradignan, France; CNRS/IN2P3, Centre d'Etudes Nucléaires de Bordeaux-Gradignan, CENBG, Chemin du solarium, 33175 Gradignan, France.
- 700 1_
- $a Papamichael, George $u Medical Physics Laboratory, University of Ioannina Medical School, 45110 Ioannina, Greece; Division of Applied Statistics, Institute of Labor (GSEE), 10681 Athens, Greece.
- 700 1_
- $a Emfietzoglou, Dimitris $u Medical Physics Laboratory, University of Ioannina Medical School, 45110 Ioannina, Greece. Electronic address: demfietz@cc.uoi.gr.
- 773 0_
- $w MED00000499 $t Applied radiation and isotopes including data, instrumentation and methods for use in agriculture, industry and medicine $x 1872-9800 $g Roč. 104, č. - (2015), s. 113-23
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26159660 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160722 $b ABA008
- 991 __
- $a 20160725102931 $b ABA008
- 999 __
- $a ok $b bmc $g 1155236 $s 945094
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 104 $c - $d 113-23 $e 20150623 $i 1872-9800 $m Applied radiation and isotopes $n Appl Radiat Isot $x MED00000499
- LZP __
- $a Pubmed-20160722