• Je něco špatně v tomto záznamu ?

A comparison of genomic selection models across time in interior spruce (Picea engelmannii × glauca) using unordered SNP imputation methods

B. Ratcliffe, OG. El-Dien, J. Klápště, I. Porth, C. Chen, B. Jaquish, YA. El-Kassaby,

. 2015 ; 115 (6) : 547-55. [pub] 20150701

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16020606
E-zdroje Online Plný text

NLK Free Medical Journals od 2011
PubMed Central od 2011 do Před 1 rokem
Europe PubMed Central od 2011 do Před 1 rokem
ProQuest Central od 2000-01-01 do Před 1 rokem
Open Access Digital Library od 1947-01-01
Medline Complete (EBSCOhost) od 1996-01-01 do 2015-12-31
Health & Medicine (ProQuest) od 2000-01-01 do Před 1 rokem
Public Health Database (ProQuest) od 2000-01-01 do Před 1 rokem

Genomic selection (GS) potentially offers an unparalleled advantage over traditional pedigree-based selection (TS) methods by reducing the time commitment required to carry out a single cycle of tree improvement. This quality is particularly appealing to tree breeders, where lengthy improvement cycles are the norm. We explored the prospect of implementing GS for interior spruce (Picea engelmannii × glauca) utilizing a genotyped population of 769 trees belonging to 25 open-pollinated families. A series of repeated tree height measurements through ages 3-40 years permitted the testing of GS methods temporally. The genotyping-by-sequencing (GBS) platform was used for single nucleotide polymorphism (SNP) discovery in conjunction with three unordered imputation methods applied to a data set with 60% missing information. Further, three diverse GS models were evaluated based on predictive accuracy (PA), and their marker effects. Moderate levels of PA (0.31-0.55) were observed and were of sufficient capacity to deliver improved selection response over TS. Additionally, PA varied substantially through time accordingly with spatial competition among trees. As expected, temporal PA was well correlated with age-age genetic correlation (r=0.99), and decreased substantially with increasing difference in age between the training and validation populations (0.04-0.47). Moreover, our imputation comparisons indicate that k-nearest neighbor and singular value decomposition yielded a greater number of SNPs and gave higher predictive accuracies than imputing with the mean. Furthermore, the ridge regression (rrBLUP) and BayesCπ (BCπ) models both yielded equal, and better PA than the generalized ridge regression heteroscedastic effect model for the traits evaluated.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16020606
003      
CZ-PrNML
005      
20160727110322.0
007      
ta
008      
160722s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/hdy.2015.57 $2 doi
024    7_
$a 10.1038/hdy.2015.57 $2 doi
035    __
$a (PubMed)26126540
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Ratcliffe, B $u Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia, Canada.
245    12
$a A comparison of genomic selection models across time in interior spruce (Picea engelmannii × glauca) using unordered SNP imputation methods / $c B. Ratcliffe, OG. El-Dien, J. Klápště, I. Porth, C. Chen, B. Jaquish, YA. El-Kassaby,
520    9_
$a Genomic selection (GS) potentially offers an unparalleled advantage over traditional pedigree-based selection (TS) methods by reducing the time commitment required to carry out a single cycle of tree improvement. This quality is particularly appealing to tree breeders, where lengthy improvement cycles are the norm. We explored the prospect of implementing GS for interior spruce (Picea engelmannii × glauca) utilizing a genotyped population of 769 trees belonging to 25 open-pollinated families. A series of repeated tree height measurements through ages 3-40 years permitted the testing of GS methods temporally. The genotyping-by-sequencing (GBS) platform was used for single nucleotide polymorphism (SNP) discovery in conjunction with three unordered imputation methods applied to a data set with 60% missing information. Further, three diverse GS models were evaluated based on predictive accuracy (PA), and their marker effects. Moderate levels of PA (0.31-0.55) were observed and were of sufficient capacity to deliver improved selection response over TS. Additionally, PA varied substantially through time accordingly with spatial competition among trees. As expected, temporal PA was well correlated with age-age genetic correlation (r=0.99), and decreased substantially with increasing difference in age between the training and validation populations (0.04-0.47). Moreover, our imputation comparisons indicate that k-nearest neighbor and singular value decomposition yielded a greater number of SNPs and gave higher predictive accuracies than imputing with the mean. Furthermore, the ridge regression (rrBLUP) and BayesCπ (BCπ) models both yielded equal, and better PA than the generalized ridge regression heteroscedastic effect model for the traits evaluated.
650    _2
$a populační genetika $7 D005828
650    _2
$a genotyp $7 D005838
650    _2
$a genotypizační techniky $x metody $7 D060005
650    12
$a modely genetické $7 D008957
650    _2
$a smrk $x genetika $7 D028222
650    _2
$a jednonukleotidový polymorfismus $7 D020641
650    12
$a selekce (genetika) $7 D012641
651    _2
$a Britská Kolumbie $7 D001955
655    _2
$a srovnávací studie $7 D003160
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a El-Dien, O G $u Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia, Canada.
700    1_
$a Klápště, J $u Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia, Canada. Department of Genetics and Physiology of Forest Trees, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha 6, Czech Republic.
700    1_
$a Porth, I $u Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia, Canada.
700    1_
$a Chen, C $u Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA.
700    1_
$a Jaquish, B $u British Columbia Ministry of Forests, Lands and Natural Resource Operations, Tree Improvement Branch, Kalamalka Research Station and Seed Orchard, Vernon, British Columbia, Canada.
700    1_
$a El-Kassaby, Y A $u Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, British Columbia, Canada.
773    0_
$w MED00002030 $t Heredity $x 1365-2540 $g Roč. 115, č. 6 (2015), s. 547-55
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26126540 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20160727110543 $b ABA008
999    __
$a ok $b bmc $g 1155276 $s 945134
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 115 $c 6 $d 547-55 $e 20150701 $i 1365-2540 $m Heredity $n Heredity $x MED00002030
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...