-
Je něco špatně v tomto záznamu ?
Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size
LJ. Kelly, S. Renny-Byfield, J. Pellicer, J. Macas, P. Novák, P. Neumann, MA. Lysak, PD. Day, M. Berger, MF. Fay, RA. Nichols, AR. Leitch, IJ. Leitch,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1902 do Před 1 rokem
Wiley Free Content
od 1997 do Před 1 rokem
PubMed
26061193
DOI
10.1111/nph.13471
Knihovny.cz E-zdroje
- MeSH
- delece genu MeSH
- délka genomu * MeSH
- DNA rostlinná genetika MeSH
- Fritillaria genetika MeSH
- genom rostlinný * MeSH
- molekulární sekvence - údaje MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families.
Biology Centre CAS Institute of Plant Molecular Biology CZ 37005 České Budějovice Czech Republic
Jodrell Laboratory Royal Botanic Gardens Kew Richmond TW9 3DS UK
School of Biological and Chemical Sciences Queen Mary University of London London E1 4NS UK
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16020691
- 003
- CZ-PrNML
- 005
- 20160727112558.0
- 007
- ta
- 008
- 160722s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/nph.13471 $2 doi
- 024 7_
- $a 10.1111/nph.13471 $2 doi
- 035 __
- $a (PubMed)26061193
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Kelly, Laura J $u School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK. Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK.
- 245 10
- $a Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size / $c LJ. Kelly, S. Renny-Byfield, J. Pellicer, J. Macas, P. Novák, P. Neumann, MA. Lysak, PD. Day, M. Berger, MF. Fay, RA. Nichols, AR. Leitch, IJ. Leitch,
- 520 9_
- $a Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families.
- 650 _2
- $a DNA rostlinná $x genetika $7 D018744
- 650 _2
- $a Fritillaria $x genetika $7 D031410
- 650 _2
- $a delece genu $7 D017353
- 650 12
- $a délka genomu $7 D059646
- 650 12
- $a genom rostlinný $7 D018745
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a repetitivní sekvence nukleových kyselin $x genetika $7 D012091
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Renny-Byfield, Simon $u School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK. Department of Plant Sciences, University of California Davis, Davis, CA, 95616, USA.
- 700 1_
- $a Pellicer, Jaume $u Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK.
- 700 1_
- $a Macas, Jiří $u Biology Centre CAS, Institute of Plant Molecular Biology, CZ-37005, České Budějovice, Czech Republic.
- 700 1_
- $a Novák, Petr $u Biology Centre CAS, Institute of Plant Molecular Biology, CZ-37005, České Budějovice, Czech Republic.
- 700 1_
- $a Neumann, Pavel $u Biology Centre CAS, Institute of Plant Molecular Biology, CZ-37005, České Budějovice, Czech Republic.
- 700 1_
- $a Lysak, Martin A $u Plant Cytogenomics Research Group, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
- 700 1_
- $a Day, Peter D $u School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK. Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK.
- 700 1_
- $a Berger, Madeleine $u Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK. School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK. Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK.
- 700 1_
- $a Fay, Michael F $u Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK.
- 700 1_
- $a Nichols, Richard A $u School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
- 700 1_
- $a Leitch, Andrew R $u School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
- 700 1_
- $a Leitch, Ilia J $u Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS, UK.
- 773 0_
- $w MED00007692 $t The New phytologist $x 1469-8137 $g Roč. 208, č. 2 (2015), s. 596-607
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26061193 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160722 $b ABA008
- 991 __
- $a 20160727112819 $b ABA008
- 999 __
- $a ok $b bmc $g 1155361 $s 945219
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 208 $c 2 $d 596-607 $e 20150608 $i 1469-8137 $m New phytologist $n New Phytol $x MED00007692
- LZP __
- $a Pubmed-20160722