• Je něco špatně v tomto záznamu ?

Tomato (Solanum lycopersicum L.) SlIPT3 and SlIPT4 isopentenyltransferases mediate salt stress response in tomato

E. Žižková, PI. Dobrev, Y. Muhovski, P. Hošek, K. Hoyerová, D. Haisel, D. Procházková, S. Lutts, V. Motyka, I. Hichri,

. 2015 ; 15 (-) : 85. [pub] 20150312

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16020870

BACKGROUND: Cytokinins (CKs) are involved in response to various environmental cues, including salinity. It has been previously reported that enhancing CK contents improved salt stress tolerance in tomato. However, the underlying mechanisms of CK metabolism and signaling under salt stress conditions remain to be deciphered. RESULTS: Two tomato isopentenyltransferases, SlIPT3 and SlIPT4, were characterized in tomato and Arabidopsis. Both proteins displayed isopentenyltransferase (IPT) activity in vitro, while their encoding genes exhibited different spatio-temporal expression patterns during tomato plant development. SlIPT3 and SlIPT4 were affected by the endogenous CK status, tightly connected with CKs feedback regulation, as revealed by hormonal treatements. In response to salt stress, SlIPT3 and SlIPT4 were strongly repressed in tomato roots, and differently affected in young and old leaves. SlIPT3 overexpression in tomato resulted in high accumulation of different CK metabolites, following modifications of CK biosynthesis-, signaling- and degradation-gene expression. In addition, 35S::SlIPT3 tomato plants displayed improved tolerance to salinity consecutive to photosynthetic pigments and K(+)/Na(+) ratio retention. Involvement of SlIPT3 and SlIPT4 in salt stress response was also observed in Arabidopsis ipt3 knock-out complemented plants, through maintenance of CK homeostasis. CONCLUSIONS: SlIPT3 and SlIPT4 are functional IPTs encoded by differently expressed genes, distinctively taking part in the salinity response. The substantial participation of SlIPT3 in CK metabolism during salt stress has been determined in 35S::SlIPT3 tomato transformants, where enhancement of CKs accumulation significantly improved plant tolerance to salinity, underlining the importance of this phytohormone in stress response.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16020870
003      
CZ-PrNML
005      
20180523133157.0
007      
ta
008      
160722s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12870-015-0415-7 $2 doi
024    7_
$a 10.1186/s12870-015-0415-7 $2 doi
035    __
$a (PubMed)25888402
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Žižková, Eva $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, 165 02, Czech Republic. zizkovae@ueb.cas.cz.
245    10
$a Tomato (Solanum lycopersicum L.) SlIPT3 and SlIPT4 isopentenyltransferases mediate salt stress response in tomato / $c E. Žižková, PI. Dobrev, Y. Muhovski, P. Hošek, K. Hoyerová, D. Haisel, D. Procházková, S. Lutts, V. Motyka, I. Hichri,
520    9_
$a BACKGROUND: Cytokinins (CKs) are involved in response to various environmental cues, including salinity. It has been previously reported that enhancing CK contents improved salt stress tolerance in tomato. However, the underlying mechanisms of CK metabolism and signaling under salt stress conditions remain to be deciphered. RESULTS: Two tomato isopentenyltransferases, SlIPT3 and SlIPT4, were characterized in tomato and Arabidopsis. Both proteins displayed isopentenyltransferase (IPT) activity in vitro, while their encoding genes exhibited different spatio-temporal expression patterns during tomato plant development. SlIPT3 and SlIPT4 were affected by the endogenous CK status, tightly connected with CKs feedback regulation, as revealed by hormonal treatements. In response to salt stress, SlIPT3 and SlIPT4 were strongly repressed in tomato roots, and differently affected in young and old leaves. SlIPT3 overexpression in tomato resulted in high accumulation of different CK metabolites, following modifications of CK biosynthesis-, signaling- and degradation-gene expression. In addition, 35S::SlIPT3 tomato plants displayed improved tolerance to salinity consecutive to photosynthetic pigments and K(+)/Na(+) ratio retention. Involvement of SlIPT3 and SlIPT4 in salt stress response was also observed in Arabidopsis ipt3 knock-out complemented plants, through maintenance of CK homeostasis. CONCLUSIONS: SlIPT3 and SlIPT4 are functional IPTs encoded by differently expressed genes, distinctively taking part in the salinity response. The substantial participation of SlIPT3 in CK metabolism during salt stress has been determined in 35S::SlIPT3 tomato transformants, where enhancement of CKs accumulation significantly improved plant tolerance to salinity, underlining the importance of this phytohormone in stress response.
650    _2
$a alkyltransferasy a aryltransferasy $x genetika $x fyziologie $7 D019883
650    _2
$a Arabidopsis $x genetika $x fyziologie $7 D017360
650    _2
$a cytokininy $x metabolismus $7 D003583
650    12
$a regulace genové exprese u rostlin $7 D018506
650    _2
$a Solanum lycopersicum $x embryologie $x enzymologie $x genetika $x fyziologie $7 D018551
650    _2
$a geneticky modifikované rostliny $x genetika $x fyziologie $7 D030821
650    12
$a tolerance k soli $7 D055049
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Dobrev, Petre I $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, 165 02, Czech Republic. dobrev@ueb.cas.cz.
700    1_
$a Muhovski, Yordan $u Département Sciences du vivant, Centre wallon de Recherches Agronomiques, Gembloux, B-5030, Belgium. muhovski@cra.wallonie.be.
700    1_
$a Hošek, Petr $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, 165 02, Czech Republic. hosekpe2@fbmi.cvut.cz. Department of Biomedical Informatics, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, 272 01, Czech Republic. hosekpe2@fbmi.cvut.cz. $7 xx0224573
700    1_
$a Hoyerová, Klára $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, 165 02, Czech Republic. hoyerova@ueb.cas.cz.
700    1_
$a Haisel, Daniel $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, 165 02, Czech Republic. haisel@ueb.cas.cz.
700    1_
$a Procházková, Dagmar $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, 165 02, Czech Republic. prochazkovad@ueb.cas.cz.
700    1_
$a Lutts, Stanley $u Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain (UCL), Louvain-la-Neuve, 1348, Belgium. Stanley.Lutts@uclouvain.be.
700    1_
$a Motyka, Václav $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, 165 02, Czech Republic. motyka@ueb.cas.cz.
700    1_
$a Hichri, Imène $u Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain (UCL), Louvain-la-Neuve, 1348, Belgium. imene.hichri@sophia.inra.fr. Institut National de la Recherche Agronomique, Institut Sophia Agrobiotech (ISA), UMR INRA 1355, CNRS 7254, Université de Nice-Sophia Antipolis, 400 route des Chappes, BP167, F-06903, Sophia-Antipolis Cedex, France. imene.hichri@sophia.inra.fr.
773    0_
$w MED00006798 $t BMC plant biology $x 1471-2229 $g Roč. 15, č. - (2015), s. 85
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25888402 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20180523133342 $b ABA008
999    __
$a ok $b bmc $g 1155540 $s 945398
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 15 $c - $d 85 $e 20150312 $i 1471-2229 $m Bmc plant biology $n BMC Plant Biol $x MED00006798
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...