-
Something wrong with this record ?
An ancestral bacterial division system is widespread in eukaryotic mitochondria
MM. Leger, M. Petrů, V. Žárský, L. Eme, Č. Vlček, T. Harding, BF. Lang, M. Eliáš, P. Doležal, AJ. Roger,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 1915 to 6 months ago
Freely Accessible Science Journals
from 1915 to 6 months ago
PubMed Central
from 1915 to 6 months ago
Europe PubMed Central
from 1915 to 6 months ago
Open Access Digital Library
from 1915-01-01
Open Access Digital Library
from 1915-01-15
- MeSH
- Adenosine Triphosphatases metabolism MeSH
- Arabidopsis genetics MeSH
- Bacteria cytology MeSH
- Bacterial Proteins genetics metabolism MeSH
- Cell Division MeSH
- Cytoskeletal Proteins genetics MeSH
- Databases, Genetic MeSH
- Dictyostelium metabolism MeSH
- DNA, Bacterial genetics MeSH
- Phylogeny MeSH
- Mitochondrial Dynamics * MeSH
- Mitochondria metabolism MeSH
- Evolution, Molecular MeSH
- Molecular Sequence Data MeSH
- Plastids metabolism MeSH
- Likelihood Functions MeSH
- Cell Cycle Proteins metabolism MeSH
- Escherichia coli Proteins metabolism MeSH
- Saccharomyces cerevisiae genetics metabolism MeSH
- Base Sequence MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Bacterial division initiates at the site of a contractile Z-ring composed of polymerized FtsZ. The location of the Z-ring in the cell is controlled by a system of three mutually antagonistic proteins, MinC, MinD, and MinE. Plastid division is also known to be dependent on homologs of these proteins, derived from the ancestral cyanobacterial endosymbiont that gave rise to plastids. In contrast, the mitochondria of model systems such as Saccharomyces cerevisiae, mammals, and Arabidopsis thaliana seem to have replaced the ancestral α-proteobacterial Min-based division machinery with host-derived dynamin-related proteins that form outer contractile rings. Here, we show that the mitochondrial division system of these model organisms is the exception, rather than the rule, for eukaryotes. We describe endosymbiont-derived, bacterial-like division systems comprising FtsZ and Min proteins in diverse less-studied eukaryote protistan lineages, including jakobid and heterolobosean excavates, a malawimonad, stramenopiles, amoebozoans, a breviate, and an apusomonad. For two of these taxa, the amoebozoan Dictyostelium purpureum and the jakobid Andalucia incarcerata, we confirm a mitochondrial localization of these proteins by their heterologous expression in Saccharomyces cerevisiae. The discovery of a proteobacterial-like division system in mitochondria of diverse eukaryotic lineages suggests that it was the ancestral feature of all eukaryotic mitochondria and has been supplanted by a host-derived system multiple times in distinct eukaryote lineages.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16020903
- 003
- CZ-PrNML
- 005
- 20161004105815.0
- 007
- ta
- 008
- 160722s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1073/pnas.1421392112 $2 doi
- 024 7_
- $a 10.1073/pnas.1421392112 $2 doi
- 035 __
- $a (PubMed)25831547
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Leger, Michelle M $u Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2;
- 245 13
- $a An ancestral bacterial division system is widespread in eukaryotic mitochondria / $c MM. Leger, M. Petrů, V. Žárský, L. Eme, Č. Vlček, T. Harding, BF. Lang, M. Eliáš, P. Doležal, AJ. Roger,
- 520 9_
- $a Bacterial division initiates at the site of a contractile Z-ring composed of polymerized FtsZ. The location of the Z-ring in the cell is controlled by a system of three mutually antagonistic proteins, MinC, MinD, and MinE. Plastid division is also known to be dependent on homologs of these proteins, derived from the ancestral cyanobacterial endosymbiont that gave rise to plastids. In contrast, the mitochondria of model systems such as Saccharomyces cerevisiae, mammals, and Arabidopsis thaliana seem to have replaced the ancestral α-proteobacterial Min-based division machinery with host-derived dynamin-related proteins that form outer contractile rings. Here, we show that the mitochondrial division system of these model organisms is the exception, rather than the rule, for eukaryotes. We describe endosymbiont-derived, bacterial-like division systems comprising FtsZ and Min proteins in diverse less-studied eukaryote protistan lineages, including jakobid and heterolobosean excavates, a malawimonad, stramenopiles, amoebozoans, a breviate, and an apusomonad. For two of these taxa, the amoebozoan Dictyostelium purpureum and the jakobid Andalucia incarcerata, we confirm a mitochondrial localization of these proteins by their heterologous expression in Saccharomyces cerevisiae. The discovery of a proteobacterial-like division system in mitochondria of diverse eukaryotic lineages suggests that it was the ancestral feature of all eukaryotic mitochondria and has been supplanted by a host-derived system multiple times in distinct eukaryote lineages.
- 650 _2
- $a adenosintrifosfatasy $x metabolismus $7 D000251
- 650 _2
- $a Arabidopsis $x genetika $7 D017360
- 650 _2
- $a Bacteria $x cytologie $7 D001419
- 650 _2
- $a bakteriální proteiny $x genetika $x metabolismus $7 D001426
- 650 _2
- $a sekvence nukleotidů $7 D001483
- 650 _2
- $a proteiny buněčného cyklu $x metabolismus $7 D018797
- 650 _2
- $a buněčné dělení $7 D002455
- 650 _2
- $a cytoskeletální proteiny $x genetika $7 D003598
- 650 _2
- $a DNA bakterií $x genetika $7 D004269
- 650 _2
- $a databáze genetické $7 D030541
- 650 _2
- $a Dictyostelium $x metabolismus $7 D004023
- 650 _2
- $a proteiny z Escherichia coli $x metabolismus $7 D029968
- 650 _2
- $a molekulární evoluce $7 D019143
- 650 _2
- $a pravděpodobnostní funkce $7 D016013
- 650 _2
- $a mitochondrie $x metabolismus $7 D008928
- 650 12
- $a mitochondriální dynamika $7 D063154
- 650 _2
- $a molekulární sekvence - údaje $7 D008969
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a plastidy $x metabolismus $7 D018087
- 650 _2
- $a Saccharomyces cerevisiae $x genetika $x metabolismus $7 D012441
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Petrů, Markéta $u Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in Vestec (BIOCEV) Group, Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic;
- 700 1_
- $a Žárský, Vojtěch $u Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in Vestec (BIOCEV) Group, Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic; $7 xx0206753
- 700 1_
- $a Eme, Laura $u Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2;
- 700 1_
- $a Vlček, Čestmír $u Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic;
- 700 1_
- $a Harding, Tommy $u Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2;
- 700 1_
- $a Lang, B Franz $u Robert Cedergren Centre for Bioinformatics and Genomics, Département de Biochimie, Université de Montréal, Montreal, QC, Canada, H3T 1J4; and.
- 700 1_
- $a Eliáš, Marek $u Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic.
- 700 1_
- $a Doležal, Pavel $u Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University in Vestec (BIOCEV) Group, Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic;
- 700 1_
- $a Roger, Andrew J $u Centre for Comparative Genomics and Evolutionary Bioinformatics (CGEB), Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada, B3H 4R2; andrew.roger@dal.ca.
- 773 0_
- $w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 112, č. 33 (2015), s. 10239-46
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25831547 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160722 $b ABA008
- 991 __
- $a 20161004110201 $b ABA008
- 999 __
- $a ok $b bmc $g 1155573 $s 945431
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 112 $c 33 $d 10239-46 $e 20150323 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
- LZP __
- $a Pubmed-20160722