-
Je něco špatně v tomto záznamu ?
Dimensionality reduction, and function approximation of poly(lactic-co-glycolic acid) micro- and nanoparticle dissolution rate
VK. Ojha, K. Jackowski, A. Abraham, V. Snášel,
Jazyk angličtina Země Nový Zéland
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2012-01-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2009-01-01
Taylor & Francis Open Access
od 2006-09-01
Medline Complete (EBSCOhost)
od 2012-01-01
Health & Medicine (ProQuest)
od 2012-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
PubMed
25709436
DOI
10.2147/ijn.s71847
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- kyselina mléčná chemie MeSH
- kyselina polyglykolová chemie MeSH
- mikrosféry MeSH
- nanočástice chemie MeSH
- rozpustnost MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Prediction of poly(lactic-co-glycolic acid) (PLGA) micro- and nanoparticles' dissolution rates plays a significant role in pharmaceutical and medical industries. The prediction of PLGA dissolution rate is crucial for drug manufacturing. Therefore, a model that predicts the PLGA dissolution rate could be beneficial. PLGA dissolution is influenced by numerous factors (features), and counting the known features leads to a dataset with 300 features. This large number of features and high redundancy within the dataset makes the prediction task very difficult and inaccurate. In this study, dimensionality reduction techniques were applied in order to simplify the task and eliminate irrelevant and redundant features. A heterogeneous pool of several regression algorithms were independently tested and evaluated. In addition, several ensemble methods were tested in order to improve the accuracy of prediction. The empirical results revealed that the proposed evolutionary weighted ensemble method offered the lowest margin of error and significantly outperformed the individual algorithms and the other ensemble techniques.
Department of Computer Science VŠB Technical University of Ostrava Ostrava Czech Republic
Department of Systems and Computer Networks Wrocław University of Technology Wrocław Poland
IT4Innovations VŠB Technical University of Ostrava Ostrava Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16020959
- 003
- CZ-PrNML
- 005
- 20160728104116.0
- 007
- ta
- 008
- 160722s2015 nz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.2147/IJN.S71847 $2 doi
- 024 7_
- $a 10.2147/IJN.S71847 $2 doi
- 035 __
- $a (PubMed)25709436
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a nz
- 100 1_
- $a Ojha, Varun Kumar $u IT4Innovations, VŠB - Technical University of Ostrava, Ostrava, Czech Republic ; Department of Computer Science, VŠB - Technical University of Ostrava, Ostrava, Czech Republic.
- 245 10
- $a Dimensionality reduction, and function approximation of poly(lactic-co-glycolic acid) micro- and nanoparticle dissolution rate / $c VK. Ojha, K. Jackowski, A. Abraham, V. Snášel,
- 520 9_
- $a Prediction of poly(lactic-co-glycolic acid) (PLGA) micro- and nanoparticles' dissolution rates plays a significant role in pharmaceutical and medical industries. The prediction of PLGA dissolution rate is crucial for drug manufacturing. Therefore, a model that predicts the PLGA dissolution rate could be beneficial. PLGA dissolution is influenced by numerous factors (features), and counting the known features leads to a dataset with 300 features. This large number of features and high redundancy within the dataset makes the prediction task very difficult and inaccurate. In this study, dimensionality reduction techniques were applied in order to simplify the task and eliminate irrelevant and redundant features. A heterogeneous pool of several regression algorithms were independently tested and evaluated. In addition, several ensemble methods were tested in order to improve the accuracy of prediction. The empirical results revealed that the proposed evolutionary weighted ensemble method offered the lowest margin of error and significantly outperformed the individual algorithms and the other ensemble techniques.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a kyselina mléčná $x chemie $7 D019344
- 650 _2
- $a mikrosféry $7 D008863
- 650 _2
- $a nanočástice $x chemie $7 D053758
- 650 _2
- $a kyselina polyglykolová $x chemie $7 D011100
- 650 _2
- $a rozpustnost $7 D012995
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Jackowski, Konrad $u Department of Systems and Computer Networks, Wrocław University of Technology, Wrocław, Poland.
- 700 1_
- $a Abraham, Ajith $u IT4Innovations, VŠB - Technical University of Ostrava, Ostrava, Czech Republic ; Machine Intelligence Research Labs, Auburn, WA, USA. $7 gn_A_00000694
- 700 1_
- $a Snášel, Václav $u IT4Innovations, VŠB - Technical University of Ostrava, Ostrava, Czech Republic ; Department of Computer Science, VŠB - Technical University of Ostrava, Ostrava, Czech Republic.
- 773 0_
- $w MED00176143 $t International journal of nanomedicine $x 1178-2013 $g Roč. 10, č. - (2015), s. 1119-29
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25709436 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160722 $b ABA008
- 991 __
- $a 20160728104338 $b ABA008
- 999 __
- $a ok $b bmc $g 1155629 $s 945487
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 10 $c - $d 1119-29 $e 20150204 $i 1178-2013 $m International journal of nanomedicine $n Int J Nanomedicine $x MED00176143
- LZP __
- $a Pubmed-20160722