Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Dimensionality reduction, and function approximation of poly(lactic-co-glycolic acid) micro- and nanoparticle dissolution rate

VK. Ojha, K. Jackowski, A. Abraham, V. Snášel,

. 2015 ; 10 (-) : 1119-29. [pub] 20150204

Jazyk angličtina Země Nový Zéland

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16020959

Prediction of poly(lactic-co-glycolic acid) (PLGA) micro- and nanoparticles' dissolution rates plays a significant role in pharmaceutical and medical industries. The prediction of PLGA dissolution rate is crucial for drug manufacturing. Therefore, a model that predicts the PLGA dissolution rate could be beneficial. PLGA dissolution is influenced by numerous factors (features), and counting the known features leads to a dataset with 300 features. This large number of features and high redundancy within the dataset makes the prediction task very difficult and inaccurate. In this study, dimensionality reduction techniques were applied in order to simplify the task and eliminate irrelevant and redundant features. A heterogeneous pool of several regression algorithms were independently tested and evaluated. In addition, several ensemble methods were tested in order to improve the accuracy of prediction. The empirical results revealed that the proposed evolutionary weighted ensemble method offered the lowest margin of error and significantly outperformed the individual algorithms and the other ensemble techniques.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16020959
003      
CZ-PrNML
005      
20160728104116.0
007      
ta
008      
160722s2015 nz f 000 0|eng||
009      
AR
024    7_
$a 10.2147/IJN.S71847 $2 doi
024    7_
$a 10.2147/IJN.S71847 $2 doi
035    __
$a (PubMed)25709436
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a nz
100    1_
$a Ojha, Varun Kumar $u IT4Innovations, VŠB - Technical University of Ostrava, Ostrava, Czech Republic ; Department of Computer Science, VŠB - Technical University of Ostrava, Ostrava, Czech Republic.
245    10
$a Dimensionality reduction, and function approximation of poly(lactic-co-glycolic acid) micro- and nanoparticle dissolution rate / $c VK. Ojha, K. Jackowski, A. Abraham, V. Snášel,
520    9_
$a Prediction of poly(lactic-co-glycolic acid) (PLGA) micro- and nanoparticles' dissolution rates plays a significant role in pharmaceutical and medical industries. The prediction of PLGA dissolution rate is crucial for drug manufacturing. Therefore, a model that predicts the PLGA dissolution rate could be beneficial. PLGA dissolution is influenced by numerous factors (features), and counting the known features leads to a dataset with 300 features. This large number of features and high redundancy within the dataset makes the prediction task very difficult and inaccurate. In this study, dimensionality reduction techniques were applied in order to simplify the task and eliminate irrelevant and redundant features. A heterogeneous pool of several regression algorithms were independently tested and evaluated. In addition, several ensemble methods were tested in order to improve the accuracy of prediction. The empirical results revealed that the proposed evolutionary weighted ensemble method offered the lowest margin of error and significantly outperformed the individual algorithms and the other ensemble techniques.
650    _2
$a algoritmy $7 D000465
650    _2
$a kyselina mléčná $x chemie $7 D019344
650    _2
$a mikrosféry $7 D008863
650    _2
$a nanočástice $x chemie $7 D053758
650    _2
$a kyselina polyglykolová $x chemie $7 D011100
650    _2
$a rozpustnost $7 D012995
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Jackowski, Konrad $u Department of Systems and Computer Networks, Wrocław University of Technology, Wrocław, Poland.
700    1_
$a Abraham, Ajith $u IT4Innovations, VŠB - Technical University of Ostrava, Ostrava, Czech Republic ; Machine Intelligence Research Labs, Auburn, WA, USA. $7 gn_A_00000694
700    1_
$a Snášel, Václav $u IT4Innovations, VŠB - Technical University of Ostrava, Ostrava, Czech Republic ; Department of Computer Science, VŠB - Technical University of Ostrava, Ostrava, Czech Republic.
773    0_
$w MED00176143 $t International journal of nanomedicine $x 1178-2013 $g Roč. 10, č. - (2015), s. 1119-29
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25709436 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20160728104338 $b ABA008
999    __
$a ok $b bmc $g 1155629 $s 945487
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 10 $c - $d 1119-29 $e 20150204 $i 1178-2013 $m International journal of nanomedicine $n Int J Nanomedicine $x MED00176143
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...