Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Predator interference and stability of predator-prey dynamics

L. Přibylová, L. Berec,

. 2015 ; 71 (2) : 301-23. [pub] 20140810

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16021072
E-zdroje Online Plný text

NLK ProQuest Central od 1997-11-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2005-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 1997-11-01 do Před 1 rokem

Predator interference, that is, a decline in the per predator consumption rate as predator density increases, is generally thought to promote predator-prey stability. Indeed, this has been demonstrated in many theoretical studies on predator-prey dynamics. In virtually all of these studies, the stabilization role is demonstrated as a weakening of the paradox of enrichment. With predator interference, stable limit cycles that appear as a result of environmental enrichment occur for higher values of the environmental carrying capacity of prey, and even a complete absence of the limit cycles can happen. Here we study predator-prey dynamics using the Rosenzweig-MacArthur-like model in which the Holling type II functional response has been replaced by a predator-dependent family which generalizes many of the commonly used descriptions of predator interference. By means of a bifurcation analysis we show that sufficiently strong predator interference may bring about another stabilizing mechanism. In particular, hysteresis combined with (dis)appearance of stable limit cycles imply abrupt increases in both the prey and predator densities and enhanced persistence and resilience of the predator-prey system. We encourage refitting the previously collected data on predator consumption rates as well as for conducting further predation experiments to see what functional response from the explored family is the most appropriate.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16021072
003      
CZ-PrNML
005      
20160801103340.0
007      
ta
008      
160722s2015 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00285-014-0820-9 $2 doi
024    7_
$a 10.1007/s00285-014-0820-9 $2 doi
035    __
$a (PubMed)25108420
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Přibylová, Lenka $u Section of Applied Mathematics, Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic, pribylova@math.muni.cz.
245    10
$a Predator interference and stability of predator-prey dynamics / $c L. Přibylová, L. Berec,
520    9_
$a Predator interference, that is, a decline in the per predator consumption rate as predator density increases, is generally thought to promote predator-prey stability. Indeed, this has been demonstrated in many theoretical studies on predator-prey dynamics. In virtually all of these studies, the stabilization role is demonstrated as a weakening of the paradox of enrichment. With predator interference, stable limit cycles that appear as a result of environmental enrichment occur for higher values of the environmental carrying capacity of prey, and even a complete absence of the limit cycles can happen. Here we study predator-prey dynamics using the Rosenzweig-MacArthur-like model in which the Holling type II functional response has been replaced by a predator-dependent family which generalizes many of the commonly used descriptions of predator interference. By means of a bifurcation analysis we show that sufficiently strong predator interference may bring about another stabilizing mechanism. In particular, hysteresis combined with (dis)appearance of stable limit cycles imply abrupt increases in both the prey and predator densities and enhanced persistence and resilience of the predator-prey system. We encourage refitting the previously collected data on predator consumption rates as well as for conducting further predation experiments to see what functional response from the explored family is the most appropriate.
650    _2
$a zvířata $7 D000818
650    _2
$a výpočetní biologie $7 D019295
650    _2
$a ekosystém $7 D017753
650    12
$a potravní řetězec $7 D020387
650    _2
$a matematické pojmy $7 D055641
650    12
$a biologické modely $7 D008954
650    _2
$a populační dynamika $7 D011157
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Berec, Luděk
773    0_
$w MED00002783 $t Journal of mathematical biology $x 1432-1416 $g Roč. 71, č. 2 (2015), s. 301-23
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25108420 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20160801103608 $b ABA008
999    __
$a ok $b bmc $g 1155742 $s 945600
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 71 $c 2 $d 301-23 $e 20140810 $i 1432-1416 $m Journal of mathematical biology $n J Math Biol $x MED00002783
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...