• Je něco špatně v tomto záznamu ?

Nature and magnitude of aromatic base stacking in DNA and RNA: Quantum chemistry, molecular mechanics, and experiment

J. Sponer, JE. Sponer, A. Mládek, P. Jurečka, P. Banáš, M. Otyepka,

. 2013 ; 99 (12) : 978-88.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16021109

Base stacking is a major interaction shaping up and stabilizing nucleic acids. During the last decades, base stacking has been extensively studied by experimental and theoretical methods. Advanced quantum-chemical calculations clarified that base stacking is a common interaction, which in the first approximation can be described as combination of the three most basic contributions to molecular interactions, namely, electrostatic interaction, London dispersion attraction and short-range repulsion. There is not any specific π-π energy term associated with the delocalized π electrons of the aromatic rings that cannot be described by the mentioned contributions. The base stacking can be rather reasonably approximated by simple molecular simulation methods based on well-calibrated common force fields although the force fields do not include nonadditivity of stacking, anisotropy of dispersion interactions, and some other effects. However, description of stacking association in condensed phase and understanding of the stacking role in biomolecules remain a difficult problem, as the net base stacking forces always act in a complex and context-specific environment. Moreover, the stacking forces are balanced with many other energy contributions. Differences in definition of stacking in experimental and theoretical studies are explained.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16021109
003      
CZ-PrNML
005      
20160726092754.0
007      
ta
008      
160722s2013 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/bip.22322 $2 doi
024    7_
$a 10.1002/bip.22322 $2 doi
035    __
$a (PubMed)23784745
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Sponer, Jiří $u Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; CEITEC-Central European Institute of Technology, Campus Bohunice, 625 00 Brno, Czech Republic.
245    10
$a Nature and magnitude of aromatic base stacking in DNA and RNA: Quantum chemistry, molecular mechanics, and experiment / $c J. Sponer, JE. Sponer, A. Mládek, P. Jurečka, P. Banáš, M. Otyepka,
520    9_
$a Base stacking is a major interaction shaping up and stabilizing nucleic acids. During the last decades, base stacking has been extensively studied by experimental and theoretical methods. Advanced quantum-chemical calculations clarified that base stacking is a common interaction, which in the first approximation can be described as combination of the three most basic contributions to molecular interactions, namely, electrostatic interaction, London dispersion attraction and short-range repulsion. There is not any specific π-π energy term associated with the delocalized π electrons of the aromatic rings that cannot be described by the mentioned contributions. The base stacking can be rather reasonably approximated by simple molecular simulation methods based on well-calibrated common force fields although the force fields do not include nonadditivity of stacking, anisotropy of dispersion interactions, and some other effects. However, description of stacking association in condensed phase and understanding of the stacking role in biomolecules remain a difficult problem, as the net base stacking forces always act in a complex and context-specific environment. Moreover, the stacking forces are balanced with many other energy contributions. Differences in definition of stacking in experimental and theoretical studies are explained.
650    _2
$a DNA $x chemie $7 D004247
650    _2
$a molekulární modely $7 D008958
650    _2
$a simulace molekulární dynamiky $7 D056004
650    _2
$a kvantová teorie $7 D011789
650    12
$a RNA $x chemie $7 D012313
650    12
$a termodynamika $7 D013816
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Sponer, Judit E
700    1_
$a Mládek, Arnošt
700    1_
$a Jurečka, Petr
700    1_
$a Banáš, Pavel
700    1_
$a Otyepka, Michal
773    0_
$w MED00000777 $t Biopolymers $x 1097-0282 $g Roč. 99, č. 12 (2013), s. 978-88
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23784745 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160722 $b ABA008
991    __
$a 20160726093013 $b ABA008
999    __
$a ok $b bmc $g 1155779 $s 945637
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 99 $c 12 $d 978-88 $i 1097-0282 $m Biopolymers $n Biopolymers $x MED00000777
LZP    __
$a Pubmed-20160722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...