Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Supervised, Multivariate, Whole-Brain Reduction Did Not Help to Achieve High Classification Performance in Schizophrenia Research

E. Janousova, G. Montana, T. Kasparek, D. Schwarz,

. 2016 ; 10 (-) : 392. [pub] 20160825

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc16027414

Grantová podpora
NT13359 MZ0 CEP - Centrální evidence projektů

We examined how penalized linear discriminant analysis with resampling, which is a supervised, multivariate, whole-brain reduction technique, can help schizophrenia diagnostics and research. In an experiment with magnetic resonance brain images of 52 first-episode schizophrenia patients and 52 healthy controls, this method allowed us to select brain areas relevant to schizophrenia, such as the left prefrontal cortex, the anterior cingulum, the right anterior insula, the thalamus, and the hippocampus. Nevertheless, the classification performance based on such reduced data was not significantly better than the classification of data reduced by mass univariate selection using a t-test or unsupervised multivariate reduction using principal component analysis. Moreover, we found no important influence of the type of imaging features, namely local deformations or gray matter volumes, and the classification method, specifically linear discriminant analysis or linear support vector machines, on the classification results. However, we ascertained significant effect of a cross-validation setting on classification performance as classification results were overestimated even though the resampling was performed during the selection of brain imaging features. Therefore, it is critically important to perform cross-validation in all steps of the analysis (not only during classification) in case there is no external validation set to avoid optimistically biasing the results of classification studies.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16027414
003      
CZ-PrNML
005      
20190521085127.0
007      
ta
008      
161005s2016 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3389/fnins.2016.00392 $2 doi
024    7_
$a 10.3389/fnins.2016.00392 $2 doi
035    __
$a (PubMed)27610072
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Koriťáková, Eva $u Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University Brno, Czech Republic. $7 xx0159601
245    10
$a Supervised, Multivariate, Whole-Brain Reduction Did Not Help to Achieve High Classification Performance in Schizophrenia Research / $c E. Janousova, G. Montana, T. Kasparek, D. Schwarz,
520    9_
$a We examined how penalized linear discriminant analysis with resampling, which is a supervised, multivariate, whole-brain reduction technique, can help schizophrenia diagnostics and research. In an experiment with magnetic resonance brain images of 52 first-episode schizophrenia patients and 52 healthy controls, this method allowed us to select brain areas relevant to schizophrenia, such as the left prefrontal cortex, the anterior cingulum, the right anterior insula, the thalamus, and the hippocampus. Nevertheless, the classification performance based on such reduced data was not significantly better than the classification of data reduced by mass univariate selection using a t-test or unsupervised multivariate reduction using principal component analysis. Moreover, we found no important influence of the type of imaging features, namely local deformations or gray matter volumes, and the classification method, specifically linear discriminant analysis or linear support vector machines, on the classification results. However, we ascertained significant effect of a cross-validation setting on classification performance as classification results were overestimated even though the resampling was performed during the selection of brain imaging features. Therefore, it is critically important to perform cross-validation in all steps of the analysis (not only during classification) in case there is no external validation set to avoid optimistically biasing the results of classification studies.
655    _2
$a časopisecké články $7 D016428
700    1_
$a Montana, Giovanni $u Department of Biomedical Engineering, King's College London London, UK.
700    1_
$a Kašpárek, Tomáš, $u Behavioural and Social Neuroscience Group, CEITEC - Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic; Department of Psychiatry, University Hospital Brno and Masaryk UniversityBrno, Czech Republic. $d 1975- $7 xx0031812
700    1_
$a Schwarz, Daniel, $u Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University Brno, Czech Republic. $d 1977- $7 ola2002146812
773    0_
$w MED00163313 $t Frontiers in neuroscience $x 1662-4548 $g Roč. 10, č. - (2016), s. 392
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27610072 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20161005 $b ABA008
991    __
$a 20190521085242 $b ABA008
999    __
$a ind $b bmc $g 1165728 $s 952044
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 10 $c - $d 392 $e 20160825 $i 1662-4548 $m Frontiers in neuroscience $n Front Neurosci $x MED00163313
GRA    __
$a NT13359 $p MZ0
LZP    __
$a Pubmed-20161005

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...