-
Je něco špatně v tomto záznamu ?
Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombination-poor region comprises more than half of barley chromosome 3H
L. Aliyeva-Schnorr, S. Beier, M. Karafiátová, T. Schmutzer, U. Scholz, J. Doležel, N. Stein, A. Houben,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1991 do Před 1 rokem
Wiley Free Content
od 1997 do Před 1 rokem
PubMed
26332657
DOI
10.1111/tpj.13006
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin genetika MeSH
- ječmen (rod) genetika MeSH
- mapování chromozomů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Genetic maps are based on the frequency of recombination and often show different positions of molecular markers in comparison to physical maps, particularly in the centromere that is generally poor in meiotic recombinations. To decipher the position and order of DNA sequences genetically mapped to the centromere of barley (Hordeum vulgare) chromosome 3H, fluorescence in situ hybridization with mitotic metaphase and meiotic pachytene chromosomes was performed with 70 genomic single-copy probes derived from 65 fingerprinted bacterial artificial chromosomes (BAC) contigs genetically assigned to this recombination cold spot. The total physical distribution of the centromeric 5.5 cM bin of 3H comprises 58% of the mitotic metaphase chromosome length. Mitotic and meiotic chromatin of this recombination-poor region is preferentially marked by a heterochromatin-typical histone mark (H3K9me2), while recombination enriched subterminal chromosome regions are enriched in euchromatin-typical histone marks (H3K4me2, H3K4me3, H3K27me3) suggesting that the meiotic recombination rate could be influenced by the chromatin landscape.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16028256
- 003
- CZ-PrNML
- 005
- 20161031102744.0
- 007
- ta
- 008
- 161005s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/tpj.13006 $2 doi
- 024 7_
- $a 10.1111/tpj.13006 $2 doi
- 035 __
- $a (PubMed)26332657
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Aliyeva-Schnorr, Lala $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany. $7 gn_A_00004307
- 245 10
- $a Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombination-poor region comprises more than half of barley chromosome 3H / $c L. Aliyeva-Schnorr, S. Beier, M. Karafiátová, T. Schmutzer, U. Scholz, J. Doležel, N. Stein, A. Houben,
- 520 9_
- $a Genetic maps are based on the frequency of recombination and often show different positions of molecular markers in comparison to physical maps, particularly in the centromere that is generally poor in meiotic recombinations. To decipher the position and order of DNA sequences genetically mapped to the centromere of barley (Hordeum vulgare) chromosome 3H, fluorescence in situ hybridization with mitotic metaphase and meiotic pachytene chromosomes was performed with 70 genomic single-copy probes derived from 65 fingerprinted bacterial artificial chromosomes (BAC) contigs genetically assigned to this recombination cold spot. The total physical distribution of the centromeric 5.5 cM bin of 3H comprises 58% of the mitotic metaphase chromosome length. Mitotic and meiotic chromatin of this recombination-poor region is preferentially marked by a heterochromatin-typical histone mark (H3K9me2), while recombination enriched subterminal chromosome regions are enriched in euchromatin-typical histone marks (H3K4me2, H3K4me3, H3K27me3) suggesting that the meiotic recombination rate could be influenced by the chromatin landscape.
- 650 _2
- $a mapování chromozomů $7 D002874
- 650 _2
- $a chromozomy rostlin $x genetika $7 D032461
- 650 _2
- $a ječmen (rod) $x genetika $7 D001467
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Beier, Sebastian $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.
- 700 1_
- $a Karafiátová, Miroslava $u Institute of Experimental Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
- 700 1_
- $a Schmutzer, Thomas $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.
- 700 1_
- $a Scholz, Uwe $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.
- 700 1_
- $a Doležel, Jaroslav $u Institute of Experimental Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
- 700 1_
- $a Stein, Nils $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.
- 700 1_
- $a Houben, Andreas $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Stadt Seeland, Germany.
- 773 0_
- $w MED00003838 $t The Plant journal for cell and molecular biology $x 1365-313X $g Roč. 84, č. 2 (2015), s. 385-94
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26332657 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20161005 $b ABA008
- 991 __
- $a 20161031103206 $b ABA008
- 999 __
- $a ok $b bmc $g 1166570 $s 952886
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 84 $c 2 $d 385-94 $i 1365-313X $m Plant journal $n Plant J $x MED00003838
- LZP __
- $a Pubmed-20161005