• Je něco špatně v tomto záznamu ?

Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization in Synechocystis sp. Strain PCC 6803

J. Kopečná, J. Pilný, V. Krynická, A. Tomčala, M. Kis, Z. Gombos, J. Komenda, R. Sobotka,

. 2015 ; 169 (2) : 1307-17. [pub] 20150812

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16028308

The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted ΔpgsA mutant of Synechocystis sp. strain PCC 6803, which is not able to synthesize PG, proved the inhibition of Chl biosynthesis caused by restriction on the formation of 5-aminolevulinic acid and protochlorophyllide. Although the mutant accumulated chlorophyllide, the last Chl precursor, we showed that it originated from dephytylation of existing Chl and not from the block in the Chl biosynthesis. The lack of de novo-produced Chl under PG depletion was accompanied by a significantly weakened biosynthesis of both monomeric and trimeric photosystem I (PSI) complexes, although the decrease in cellular content was manifested only for the trimeric form. However, our analysis of ΔpgsA mutant, which lacked trimeric PSI because of the absence of the PsaL subunit, suggested that the virtual stability of monomeric PSI is a result of disintegration of PSI trimers. Interestingly, the loss of trimeric PSI was accompanied by accumulation of monomeric PSI associated with the newly synthesized CP43 subunit of photosystem II. We conclude that the absence of PG results in the inhibition of Chl biosynthetic pathway, which impairs synthesis of PSI, despite the accumulation of chlorophyllide released from the degraded Chl proteins. Based on the knowledge about the role of PG in prokaryotes, we hypothesize that the synthesis of Chl and PSI complexes are colocated in a membrane microdomain requiring PG for integrity.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16028308
003      
CZ-PrNML
005      
20161031124208.0
007      
ta
008      
161005s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1104/pp.15.01150 $2 doi
024    7_
$a 10.1104/pp.15.01150 $2 doi
035    __
$a (PubMed)26269547
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kopečná, Jana $u Institute of Microbiology, Centre Algatech, 37981 Trebon, Czech Republic (J.Kop., J.P., V.K., J.Kom., R.S.);Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic (V.K., A.T., J.Kom., R.S.);Biology Centre, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic (A.T.); andInstitute of Plant Biology, Biological Research Centre, H-6701 Szeged, Hungary (M.K., Z.G.).
245    10
$a Lack of Phosphatidylglycerol Inhibits Chlorophyll Biosynthesis at Multiple Sites and Limits Chlorophyllide Reutilization in Synechocystis sp. Strain PCC 6803 / $c J. Kopečná, J. Pilný, V. Krynická, A. Tomčala, M. Kis, Z. Gombos, J. Komenda, R. Sobotka,
520    9_
$a The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted ΔpgsA mutant of Synechocystis sp. strain PCC 6803, which is not able to synthesize PG, proved the inhibition of Chl biosynthesis caused by restriction on the formation of 5-aminolevulinic acid and protochlorophyllide. Although the mutant accumulated chlorophyllide, the last Chl precursor, we showed that it originated from dephytylation of existing Chl and not from the block in the Chl biosynthesis. The lack of de novo-produced Chl under PG depletion was accompanied by a significantly weakened biosynthesis of both monomeric and trimeric photosystem I (PSI) complexes, although the decrease in cellular content was manifested only for the trimeric form. However, our analysis of ΔpgsA mutant, which lacked trimeric PSI because of the absence of the PsaL subunit, suggested that the virtual stability of monomeric PSI is a result of disintegration of PSI trimers. Interestingly, the loss of trimeric PSI was accompanied by accumulation of monomeric PSI associated with the newly synthesized CP43 subunit of photosystem II. We conclude that the absence of PG results in the inhibition of Chl biosynthetic pathway, which impairs synthesis of PSI, despite the accumulation of chlorophyllide released from the degraded Chl proteins. Based on the knowledge about the role of PG in prokaryotes, we hypothesize that the synthesis of Chl and PSI complexes are colocated in a membrane microdomain requiring PG for integrity.
650    _2
$a bakteriální proteiny $x genetika $x metabolismus $7 D001426
650    _2
$a ligasy tvořící vazby C-O $x metabolismus $7 D019729
650    _2
$a chlorofyl $x biosyntéza $x metabolismus $7 D002734
650    _2
$a chlorofylidy $x metabolismus $7 D002735
650    _2
$a světlosběrné proteinové komplexy $x metabolismus $7 D045342
650    _2
$a fosfatidylglyceroly $x genetika $x metabolismus $7 D010715
650    _2
$a fotosystém I - proteinový komplex $x metabolismus $7 D045331
650    _2
$a protochlorofylid $x metabolismus $7 D011521
650    _2
$a Synechocystis $x genetika $x metabolismus $7 D046939
650    _2
$a transferasy pro jiné substituované fosfátové skupiny $x genetika $x metabolismus $7 D017855
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Pilný, Jan $u Institute of Microbiology, Centre Algatech, 37981 Trebon, Czech Republic (J.Kop., J.P., V.K., J.Kom., R.S.);Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic (V.K., A.T., J.Kom., R.S.);Biology Centre, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic (A.T.); andInstitute of Plant Biology, Biological Research Centre, H-6701 Szeged, Hungary (M.K., Z.G.).
700    1_
$a Krynická, Vendula $u Institute of Microbiology, Centre Algatech, 37981 Trebon, Czech Republic (J.Kop., J.P., V.K., J.Kom., R.S.);Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic (V.K., A.T., J.Kom., R.S.);Biology Centre, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic (A.T.); andInstitute of Plant Biology, Biological Research Centre, H-6701 Szeged, Hungary (M.K., Z.G.).
700    1_
$a Tomčala, Aleš $u Institute of Microbiology, Centre Algatech, 37981 Trebon, Czech Republic (J.Kop., J.P., V.K., J.Kom., R.S.);Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic (V.K., A.T., J.Kom., R.S.);Biology Centre, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic (A.T.); andInstitute of Plant Biology, Biological Research Centre, H-6701 Szeged, Hungary (M.K., Z.G.).
700    1_
$a Kis, Mihály $u Institute of Microbiology, Centre Algatech, 37981 Trebon, Czech Republic (J.Kop., J.P., V.K., J.Kom., R.S.);Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic (V.K., A.T., J.Kom., R.S.);Biology Centre, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic (A.T.); andInstitute of Plant Biology, Biological Research Centre, H-6701 Szeged, Hungary (M.K., Z.G.).
700    1_
$a Gombos, Zoltan $u Institute of Microbiology, Centre Algatech, 37981 Trebon, Czech Republic (J.Kop., J.P., V.K., J.Kom., R.S.);Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic (V.K., A.T., J.Kom., R.S.);Biology Centre, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic (A.T.); andInstitute of Plant Biology, Biological Research Centre, H-6701 Szeged, Hungary (M.K., Z.G.).
700    1_
$a Komenda, Josef $u Institute of Microbiology, Centre Algatech, 37981 Trebon, Czech Republic (J.Kop., J.P., V.K., J.Kom., R.S.);Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic (V.K., A.T., J.Kom., R.S.);Biology Centre, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic (A.T.); andInstitute of Plant Biology, Biological Research Centre, H-6701 Szeged, Hungary (M.K., Z.G.).
700    1_
$a Sobotka, Roman $u Institute of Microbiology, Centre Algatech, 37981 Trebon, Czech Republic (J.Kop., J.P., V.K., J.Kom., R.S.);Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic (V.K., A.T., J.Kom., R.S.);Biology Centre, Institute of Parasitology, 37005 Ceske Budejovice, Czech Republic (A.T.); andInstitute of Plant Biology, Biological Research Centre, H-6701 Szeged, Hungary (M.K., Z.G.) sobotka@alga.cz.
773    0_
$w MED00005317 $t Plant physiology $x 1532-2548 $g Roč. 169, č. 2 (2015), s. 1307-17
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26269547 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20161005 $b ABA008
991    __
$a 20161031124131 $b ABA008
999    __
$a ok $b bmc $g 1166622 $s 952938
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 169 $c 2 $d 1307-17 $e 20150812 $i 1532-2548 $m Plant physiology $n Plant Physiol $x MED00005317
LZP    __
$a Pubmed-20161005

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace