• Je něco špatně v tomto záznamu ?

Optimal decoding and information transmission in Hodgkin-Huxley neurons under metabolic cost constraints

L. Kostal, R. Kobayashi,

. 2015 ; 136 (-) : 3-10. [pub] 20150630

Jazyk angličtina Země Irsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16028395

Information theory quantifies the ultimate limits on reliable information transfer by means of the channel capacity. However, the channel capacity is known to be an asymptotic quantity, assuming unlimited metabolic cost and computational power. We investigate a single-compartment Hodgkin-Huxley type neuronal model under the spike-rate coding scheme and address how the metabolic cost and the decoding complexity affects the optimal information transmission. We find that the sub-threshold stimulation regime, although attaining the smallest capacity, allows for the most efficient balance between the information transmission and the metabolic cost. Furthermore, we determine post-synaptic firing rate histograms that are optimal from the information-theoretic point of view, which enables the comparison of our results with experimental data.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16028395
003      
CZ-PrNML
005      
20161019102409.0
007      
ta
008      
161005s2015 ie f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.biosystems.2015.06.008 $2 doi
024    7_
$a 10.1016/j.biosystems.2015.06.008 $2 doi
035    __
$a (PubMed)26141378
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ie
100    1_
$a Kostal, Lubomir $u Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic. Electronic address: kostal@biomed.cas.cz.
245    10
$a Optimal decoding and information transmission in Hodgkin-Huxley neurons under metabolic cost constraints / $c L. Kostal, R. Kobayashi,
520    9_
$a Information theory quantifies the ultimate limits on reliable information transfer by means of the channel capacity. However, the channel capacity is known to be an asymptotic quantity, assuming unlimited metabolic cost and computational power. We investigate a single-compartment Hodgkin-Huxley type neuronal model under the spike-rate coding scheme and address how the metabolic cost and the decoding complexity affects the optimal information transmission. We find that the sub-threshold stimulation regime, although attaining the smallest capacity, allows for the most efficient balance between the information transmission and the metabolic cost. Furthermore, we determine post-synaptic firing rate histograms that are optimal from the information-theoretic point of view, which enables the comparison of our results with experimental data.
650    _2
$a akční potenciály $x fyziologie $7 D000200
650    _2
$a adenosintrifosfát $x metabolismus $7 D000255
650    _2
$a zvířata $7 D000818
650    _2
$a počítačová simulace $7 D003198
650    _2
$a energetický metabolismus $x fyziologie $7 D004734
650    _2
$a lidé $7 D006801
650    _2
$a ukládání a vyhledávání informací $x metody $7 D016247
650    _2
$a gating iontového kanálu $x fyziologie $7 D015640
650    _2
$a iontové kanály $x fyziologie $7 D007473
650    _2
$a membránové potenciály $x fyziologie $7 D008564
650    12
$a modely neurologické $7 D008959
650    _2
$a neurony $x fyziologie $7 D009474
650    _2
$a nervový přenos $x fyziologie $7 D009435
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kobayashi, Ryota $u Principles of Informatics Research Division, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan; Department of Informatics, Graduate University for Advanced Studies (Sokendai), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan.
773    0_
$w MED00000785 $t Bio Systems $x 1872-8324 $g Roč. 136, č. - (2015), s. 3-10
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26141378 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20161005 $b ABA008
991    __
$a 20161019102814 $b ABA008
999    __
$a ok $b bmc $g 1166709 $s 953025
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 136 $c - $d 3-10 $e 20150630 $i 1872-8324 $m Biosystems $n Biosystems $x MED00000785
LZP    __
$a Pubmed-20161005

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...