Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping

M. Alcaide, S. Papaioannou, A. Taylor, L. Fekete, L. Gurevich, V. Zachar, CP. Pennisi,

. 2016 ; 27 (5) : 90. [pub] 20160314

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc17000347

Boron-doped nanocrystalline diamond (BNCD) films exhibit outstanding electrochemical properties that make them very attractive for the fabrication of electrodes for novel neural interfaces and prosthetics. In these devices, the physicochemical properties of the electrode materials are critical to ensure an efficient long-term performance. The aim of this study was to investigate the relative contribution of topography and doping to the biological performance of BNCD films. For this purpose, undoped and boron-doped NCD films were deposited on low roughness (LR) and high roughness (HR) substrates, which were studied in vitro by means of protein adsorption and fibroblast growth assays. Our results show that BNCD films significantly reduce the adsorption of serum proteins, mostly on the LR substrates. As compared to fibroblasts cultured on LR BNCD films, cells grown on the HR BNCD films showed significantly reduced adhesion and lower growth rates. The mean length of fibronectin fibrils deposited by the cells was significantly increased in the BNCD coated substrates, mainly in the LR surfaces. Overall, the largest influence on protein adsorption, cell adhesion, proliferation, and fibronectin deposition was due to the underlying sub-micron topography, with little or no influence of boron doping. In perspective, BNCD films displaying surface roughness in the submicron range may be used as a strategy to reduce the fibroblast growth on the surface of neural electrodes.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17000347
003      
CZ-PrNML
005      
20170120094336.0
007      
ta
008      
170103s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s10856-016-5696-3 $2 doi
024    7_
$a 10.1007/s10856-016-5696-3 $2 doi
035    __
$a (PubMed)26975747
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Alcaide, María $u Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark. $7 gn_A_00003602
245    10
$a Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping / $c M. Alcaide, S. Papaioannou, A. Taylor, L. Fekete, L. Gurevich, V. Zachar, CP. Pennisi,
520    9_
$a Boron-doped nanocrystalline diamond (BNCD) films exhibit outstanding electrochemical properties that make them very attractive for the fabrication of electrodes for novel neural interfaces and prosthetics. In these devices, the physicochemical properties of the electrode materials are critical to ensure an efficient long-term performance. The aim of this study was to investigate the relative contribution of topography and doping to the biological performance of BNCD films. For this purpose, undoped and boron-doped NCD films were deposited on low roughness (LR) and high roughness (HR) substrates, which were studied in vitro by means of protein adsorption and fibroblast growth assays. Our results show that BNCD films significantly reduce the adsorption of serum proteins, mostly on the LR substrates. As compared to fibroblasts cultured on LR BNCD films, cells grown on the HR BNCD films showed significantly reduced adhesion and lower growth rates. The mean length of fibronectin fibrils deposited by the cells was significantly increased in the BNCD coated substrates, mainly in the LR surfaces. Overall, the largest influence on protein adsorption, cell adhesion, proliferation, and fibronectin deposition was due to the underlying sub-micron topography, with little or no influence of boron doping. In perspective, BNCD films displaying surface roughness in the submicron range may be used as a strategy to reduce the fibroblast growth on the surface of neural electrodes.
650    _2
$a 4-aminopyridin $x analogy a deriváty $x metabolismus $7 D015761
650    _2
$a aktiny $x fyziologie $7 D000199
650    _2
$a krevní proteiny $x chemie $7 D001798
650    _2
$a bor $x chemie $7 D001895
650    _2
$a buněčná adheze $x fyziologie $7 D002448
650    _2
$a proliferace buněk $7 D049109
650    _2
$a kultivované buňky $7 D002478
650    _2
$a diamant $x chemie $7 D018130
650    _2
$a fibroblasty $x fyziologie $7 D005347
650    _2
$a lidé $7 D006801
650    _2
$a testování materiálů $7 D008422
650    _2
$a membrány umělé $7 D008567
650    12
$a nanočástice $7 D053758
650    _2
$a povrchové vlastnosti $7 D013499
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Papaioannou, Stavros $u Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark.
700    1_
$a Taylor, Andrew $u Institute of Physics, ASCR v.v.i., Prague, Czech Republic. Nano6 s.r.o., Kladno, Czech Republic.
700    1_
$a Fekete, Ladislav $u Institute of Physics, ASCR v.v.i., Prague, Czech Republic.
700    1_
$a Gurevich, Leonid $u Department of Physics and Nanotechnology, Aalborg University, Aalborg ∅, Denmark.
700    1_
$a Zachar, Vladimir $u Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark.
700    1_
$a Pennisi, Cristian Pablo $u Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark. cpennisi@hst.aau.dk.
773    0_
$w MED00002780 $t Journal of materials science. Materials in medicine $x 1573-4838 $g Roč. 27, č. 5 (2016), s. 90
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26975747 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170103 $b ABA008
991    __
$a 20170120094446 $b ABA008
999    __
$a ok $b bmc $g 1179487 $s 960914
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 27 $c 5 $d 90 $e 20160314 $i 1573-4838 $m Journal of materials science. Materials in medicine $n J Mater Sci Mater Med $x MED00002780
LZP    __
$a Pubmed-20170103

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...