-
Je něco špatně v tomto záznamu ?
Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping
M. Alcaide, S. Papaioannou, A. Taylor, L. Fekete, L. Gurevich, V. Zachar, CP. Pennisi,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 2016-01-01 do 2016-12-31
Medline Complete (EBSCOhost)
od 2007-11-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 2016-01-01 do 2016-12-31
ROAD: Directory of Open Access Scholarly Resources
od 2002
- MeSH
- 4-aminopyridin analogy a deriváty metabolismus MeSH
- aktiny fyziologie MeSH
- bor chemie MeSH
- buněčná adheze fyziologie MeSH
- diamant chemie MeSH
- fibroblasty fyziologie MeSH
- krevní proteiny chemie MeSH
- kultivované buňky MeSH
- lidé MeSH
- membrány umělé MeSH
- nanočástice * MeSH
- povrchové vlastnosti MeSH
- proliferace buněk MeSH
- testování materiálů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Boron-doped nanocrystalline diamond (BNCD) films exhibit outstanding electrochemical properties that make them very attractive for the fabrication of electrodes for novel neural interfaces and prosthetics. In these devices, the physicochemical properties of the electrode materials are critical to ensure an efficient long-term performance. The aim of this study was to investigate the relative contribution of topography and doping to the biological performance of BNCD films. For this purpose, undoped and boron-doped NCD films were deposited on low roughness (LR) and high roughness (HR) substrates, which were studied in vitro by means of protein adsorption and fibroblast growth assays. Our results show that BNCD films significantly reduce the adsorption of serum proteins, mostly on the LR substrates. As compared to fibroblasts cultured on LR BNCD films, cells grown on the HR BNCD films showed significantly reduced adhesion and lower growth rates. The mean length of fibronectin fibrils deposited by the cells was significantly increased in the BNCD coated substrates, mainly in the LR surfaces. Overall, the largest influence on protein adsorption, cell adhesion, proliferation, and fibronectin deposition was due to the underlying sub-micron topography, with little or no influence of boron doping. In perspective, BNCD films displaying surface roughness in the submicron range may be used as a strategy to reduce the fibroblast growth on the surface of neural electrodes.
Department of Physics and Nanotechnology Aalborg University Aalborg ∅ Denmark
Institute of Physics ASCR v v i Prague Czech Republic
Institute of Physics ASCR v v i Prague Czech Republic Nano6 s r o Kladno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17000347
- 003
- CZ-PrNML
- 005
- 20170120094336.0
- 007
- ta
- 008
- 170103s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s10856-016-5696-3 $2 doi
- 024 7_
- $a 10.1007/s10856-016-5696-3 $2 doi
- 035 __
- $a (PubMed)26975747
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Alcaide, María $u Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark. $7 gn_A_00003602
- 245 10
- $a Resistance to protein adsorption and adhesion of fibroblasts on nanocrystalline diamond films: the role of topography and boron doping / $c M. Alcaide, S. Papaioannou, A. Taylor, L. Fekete, L. Gurevich, V. Zachar, CP. Pennisi,
- 520 9_
- $a Boron-doped nanocrystalline diamond (BNCD) films exhibit outstanding electrochemical properties that make them very attractive for the fabrication of electrodes for novel neural interfaces and prosthetics. In these devices, the physicochemical properties of the electrode materials are critical to ensure an efficient long-term performance. The aim of this study was to investigate the relative contribution of topography and doping to the biological performance of BNCD films. For this purpose, undoped and boron-doped NCD films were deposited on low roughness (LR) and high roughness (HR) substrates, which were studied in vitro by means of protein adsorption and fibroblast growth assays. Our results show that BNCD films significantly reduce the adsorption of serum proteins, mostly on the LR substrates. As compared to fibroblasts cultured on LR BNCD films, cells grown on the HR BNCD films showed significantly reduced adhesion and lower growth rates. The mean length of fibronectin fibrils deposited by the cells was significantly increased in the BNCD coated substrates, mainly in the LR surfaces. Overall, the largest influence on protein adsorption, cell adhesion, proliferation, and fibronectin deposition was due to the underlying sub-micron topography, with little or no influence of boron doping. In perspective, BNCD films displaying surface roughness in the submicron range may be used as a strategy to reduce the fibroblast growth on the surface of neural electrodes.
- 650 _2
- $a 4-aminopyridin $x analogy a deriváty $x metabolismus $7 D015761
- 650 _2
- $a aktiny $x fyziologie $7 D000199
- 650 _2
- $a krevní proteiny $x chemie $7 D001798
- 650 _2
- $a bor $x chemie $7 D001895
- 650 _2
- $a buněčná adheze $x fyziologie $7 D002448
- 650 _2
- $a proliferace buněk $7 D049109
- 650 _2
- $a kultivované buňky $7 D002478
- 650 _2
- $a diamant $x chemie $7 D018130
- 650 _2
- $a fibroblasty $x fyziologie $7 D005347
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a testování materiálů $7 D008422
- 650 _2
- $a membrány umělé $7 D008567
- 650 12
- $a nanočástice $7 D053758
- 650 _2
- $a povrchové vlastnosti $7 D013499
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Papaioannou, Stavros $u Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark.
- 700 1_
- $a Taylor, Andrew $u Institute of Physics, ASCR v.v.i., Prague, Czech Republic. Nano6 s.r.o., Kladno, Czech Republic.
- 700 1_
- $a Fekete, Ladislav $u Institute of Physics, ASCR v.v.i., Prague, Czech Republic.
- 700 1_
- $a Gurevich, Leonid $u Department of Physics and Nanotechnology, Aalborg University, Aalborg ∅, Denmark.
- 700 1_
- $a Zachar, Vladimir $u Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark.
- 700 1_
- $a Pennisi, Cristian Pablo $u Laboratory for Stem Cell Research, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark. cpennisi@hst.aau.dk.
- 773 0_
- $w MED00002780 $t Journal of materials science. Materials in medicine $x 1573-4838 $g Roč. 27, č. 5 (2016), s. 90
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26975747 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170103 $b ABA008
- 991 __
- $a 20170120094446 $b ABA008
- 999 __
- $a ok $b bmc $g 1179487 $s 960914
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 27 $c 5 $d 90 $e 20160314 $i 1573-4838 $m Journal of materials science. Materials in medicine $n J Mater Sci Mater Med $x MED00002780
- LZP __
- $a Pubmed-20170103