-
Something wrong with this record ?
Response of Organ Structure and Physiology to Autotetraploidization in Early Development of Energy Willow Salix viminalis
D. Dudits, K. Török, A. Cseri, K. Paul, AV. Nagy, B. Nagy, L. Sass, G. Ferenc, R. Vankova, P. Dobrev, I. Vass, F. Ayaydin,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 1926 to 1 year ago
Open Access Digital Library
from 1926-01-01
PubMed
26729798
DOI
10.1104/pp.15.01679
Knihovny.cz E-resources
- MeSH
- Biomass MeSH
- Chlorophyll metabolism MeSH
- Chromosomes, Plant genetics MeSH
- Diploidy MeSH
- Wood genetics physiology MeSH
- Chromosome Duplication MeSH
- Phenotype MeSH
- Photosynthesis genetics physiology MeSH
- Genome, Plant genetics MeSH
- Genotype MeSH
- Carotenoids metabolism MeSH
- Microscopy, Confocal MeSH
- Plant Roots genetics physiology MeSH
- Plant Bark genetics physiology MeSH
- Plant Leaves genetics physiology MeSH
- Plant Growth Regulators metabolism MeSH
- Salix genetics physiology MeSH
- Plant Stems genetics physiology MeSH
- Tetraploidy * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The biomass productivity of the energy willow Salix viminalis as a short-rotation woody crop depends on organ structure and functions that are under the control of genome size. Colchicine treatment of axillary buds resulted in a set of autotetraploid S. viminalis var. Energo genotypes (polyploid Energo [PP-E]; 2n = 4x = 76) with variation in the green pixel-based shoot surface area. In cases where increased shoot biomass was observed, it was primarily derived from larger leaf size and wider stem diameter. Autotetraploidy slowed primary growth and increased shoot diameter (a parameter of secondary growth). The duplicated genome size enlarged bark and wood layers in twigs sampled in the field. The PP-E plants developed wider leaves with thicker midrib and enlarged palisade parenchyma cells. Autotetraploid leaves contained significantly increased amounts of active gibberellins, cytokinins, salicylic acid, and jasmonate compared with diploid individuals. Greater net photosynthetic CO2 uptake was detected in leaves of PP-E plants with increased chlorophyll and carotenoid contents. Improved photosynthetic functions in tetraploids were also shown by more efficient electron transport rates of photosystems I and II. Autotetraploidization increased the biomass of the root system of PP-E plants relative to diploids. Sections of tetraploid roots showed thickening with enlarged cortex cells. Elevated amounts of indole acetic acid, active cytokinins, active gibberellin, and salicylic acid were detected in the root tips of these plants. The presented variation in traits of tetraploid willow genotypes provides a basis to use autopolyploidization as a chromosome engineering technique to alter the organ development of energy plants in order to improve biomass productivity.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17000691
- 003
- CZ-PrNML
- 005
- 20170112113141.0
- 007
- ta
- 008
- 170103s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1104/pp.15.01679 $2 doi
- 024 7_
- $a 10.1104/pp.15.01679 $2 doi
- 035 __
- $a (PubMed)26729798
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Dudits, Dénes $u Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (D.D., K.T., A.C., K.P., A.V.N., B.N., L.S., G.F., I.V., F.A.); andInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic (R.V., P.D.) dudits.denes@brc.mta.hu.
- 245 10
- $a Response of Organ Structure and Physiology to Autotetraploidization in Early Development of Energy Willow Salix viminalis / $c D. Dudits, K. Török, A. Cseri, K. Paul, AV. Nagy, B. Nagy, L. Sass, G. Ferenc, R. Vankova, P. Dobrev, I. Vass, F. Ayaydin,
- 520 9_
- $a The biomass productivity of the energy willow Salix viminalis as a short-rotation woody crop depends on organ structure and functions that are under the control of genome size. Colchicine treatment of axillary buds resulted in a set of autotetraploid S. viminalis var. Energo genotypes (polyploid Energo [PP-E]; 2n = 4x = 76) with variation in the green pixel-based shoot surface area. In cases where increased shoot biomass was observed, it was primarily derived from larger leaf size and wider stem diameter. Autotetraploidy slowed primary growth and increased shoot diameter (a parameter of secondary growth). The duplicated genome size enlarged bark and wood layers in twigs sampled in the field. The PP-E plants developed wider leaves with thicker midrib and enlarged palisade parenchyma cells. Autotetraploid leaves contained significantly increased amounts of active gibberellins, cytokinins, salicylic acid, and jasmonate compared with diploid individuals. Greater net photosynthetic CO2 uptake was detected in leaves of PP-E plants with increased chlorophyll and carotenoid contents. Improved photosynthetic functions in tetraploids were also shown by more efficient electron transport rates of photosystems I and II. Autotetraploidization increased the biomass of the root system of PP-E plants relative to diploids. Sections of tetraploid roots showed thickening with enlarged cortex cells. Elevated amounts of indole acetic acid, active cytokinins, active gibberellin, and salicylic acid were detected in the root tips of these plants. The presented variation in traits of tetraploid willow genotypes provides a basis to use autopolyploidization as a chromosome engineering technique to alter the organ development of energy plants in order to improve biomass productivity.
- 650 _2
- $a biomasa $7 D018533
- 650 _2
- $a karotenoidy $x metabolismus $7 D002338
- 650 _2
- $a chlorofyl $x metabolismus $7 D002734
- 650 _2
- $a duplikace chromozomů $7 D058674
- 650 _2
- $a chromozomy rostlin $x genetika $7 D032461
- 650 _2
- $a diploidie $7 D004171
- 650 _2
- $a genom rostlinný $x genetika $7 D018745
- 650 _2
- $a genotyp $7 D005838
- 650 _2
- $a konfokální mikroskopie $7 D018613
- 650 _2
- $a fenotyp $7 D010641
- 650 _2
- $a fotosyntéza $x genetika $x fyziologie $7 D010788
- 650 _2
- $a kůra rostlin $x genetika $x fyziologie $7 D024301
- 650 _2
- $a regulátory růstu rostlin $x metabolismus $7 D010937
- 650 _2
- $a listy rostlin $x genetika $x fyziologie $7 D018515
- 650 _2
- $a kořeny rostlin $x genetika $x fyziologie $7 D018517
- 650 _2
- $a stonky rostlin $x genetika $x fyziologie $7 D018547
- 650 _2
- $a Salix $x genetika $x fyziologie $7 D032108
- 650 12
- $a tetraploidie $7 D057891
- 650 _2
- $a dřevo $x genetika $x fyziologie $7 D014934
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Török, Katalin $u Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (D.D., K.T., A.C., K.P., A.V.N., B.N., L.S., G.F., I.V., F.A.); andInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic (R.V., P.D.).
- 700 1_
- $a Cseri, András $u Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (D.D., K.T., A.C., K.P., A.V.N., B.N., L.S., G.F., I.V., F.A.); andInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic (R.V., P.D.).
- 700 1_
- $a Paul, Kenny $u Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (D.D., K.T., A.C., K.P., A.V.N., B.N., L.S., G.F., I.V., F.A.); andInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic (R.V., P.D.).
- 700 1_
- $a Nagy, Anna V $u Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (D.D., K.T., A.C., K.P., A.V.N., B.N., L.S., G.F., I.V., F.A.); andInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic (R.V., P.D.).
- 700 1_
- $a Nagy, Bettina $u Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (D.D., K.T., A.C., K.P., A.V.N., B.N., L.S., G.F., I.V., F.A.); andInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic (R.V., P.D.).
- 700 1_
- $a Sass, László $u Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (D.D., K.T., A.C., K.P., A.V.N., B.N., L.S., G.F., I.V., F.A.); andInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic (R.V., P.D.).
- 700 1_
- $a Ferenc, Györgyi $u Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (D.D., K.T., A.C., K.P., A.V.N., B.N., L.S., G.F., I.V., F.A.); andInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic (R.V., P.D.).
- 700 1_
- $a Vankova, Radomira $u Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (D.D., K.T., A.C., K.P., A.V.N., B.N., L.S., G.F., I.V., F.A.); andInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic (R.V., P.D.).
- 700 1_
- $a Dobrev, Petre $u Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (D.D., K.T., A.C., K.P., A.V.N., B.N., L.S., G.F., I.V., F.A.); andInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic (R.V., P.D.).
- 700 1_
- $a Vass, Imre $u Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (D.D., K.T., A.C., K.P., A.V.N., B.N., L.S., G.F., I.V., F.A.); andInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic (R.V., P.D.).
- 700 1_
- $a Ayaydin, Ferhan $u Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, 6726 Szeged, Hungary (D.D., K.T., A.C., K.P., A.V.N., B.N., L.S., G.F., I.V., F.A.); andInstitute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic (R.V., P.D.). $7 gn_A_00010534
- 773 0_
- $w MED00005317 $t Plant physiology $x 1532-2548 $g Roč. 170, č. 3 (2016), s. 1504-23
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26729798 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170103 $b ABA008
- 991 __
- $a 20170112113240 $b ABA008
- 999 __
- $a ok $b bmc $g 1179831 $s 961258
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 170 $c 3 $d 1504-23 $e 20160104 $i 1532-2548 $m Plant physiology $n Plant Physiol $x MED00005317
- LZP __
- $a Pubmed-20170103