Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Genotype/allelic combinations as potential predictors of myocardial infarction

TR. Nasibullin, YR. Timasheva, RI. Sadikova, IA. Tuktarova, VV. Erdman, IE. Nikolaeva, J. Sabo, P. Kruzliak, OE. Mustafina,

. 2016 ; 43 (1) : 11-6. [pub] 20151212

Language English Country Netherlands

Document type Journal Article

E-resources Online Full text

NLK ProQuest Central from 1997-01-01 to 1 year ago
Medline Complete (EBSCOhost) from 2011-01-01 to 1 year ago
Health & Medicine (ProQuest) from 1997-01-01 to 1 year ago

In order to find new informative predictors of myocardial infarction, we performed an analysis of genotype frequencies of polymorphic markers of SELE (rs2076059, 3832T > C), SELP (rs6131, S290 N), SELL (rs1131498, F206L), ICAM1 (rs5498, K469E), VCAM1 (rs3917010, c.928 + 420A > C), PECAM1 (rs668, V125L), VEGFA (rs35569394, -2549(18)I/D), CCL2 (rs1024611, -2518A > G), NOS3 (rs1799983, E298D), and DDAH1 (rs669173, c.303 + 30998A > G) genes in the group of Russian men with myocardial infarction (N = 315) and the control group of corresponding ethnicity, gender, and age (N = 286). Using Markov chain Monte-Carlo method (APSampler), we found genotype combinations associated with increased and decreased risk of myocardial infarction. The most significant associations were detected for PECAM1*V/V + DDAH1*C (OR = 4.17 CI 1.56-11.15 Pperm = 0.005) SELE*C + VEGFA*I + CCL2*G + VCAM1*A + NOS3*D (OR = 2.74 CI 1.66-4.52 Pperm = 2.09 × 10(-5)), and VEGFA*D/D + CCL2*A + DDAH1*C (OR = 0.44 CI 0.28-0.7 Pperm = 7.89 × 10(-5)) genotype combinations.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17000775
003      
CZ-PrNML
005      
20170120104814.0
007      
ta
008      
170103s2016 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s11033-015-3933-3 $2 doi
024    7_
$a 10.1007/s11033-015-3933-3 $2 doi
035    __
$a (PubMed)26662939
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Nasibullin, Timur R $u Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences, Ufa, Russian Federation.
245    10
$a Genotype/allelic combinations as potential predictors of myocardial infarction / $c TR. Nasibullin, YR. Timasheva, RI. Sadikova, IA. Tuktarova, VV. Erdman, IE. Nikolaeva, J. Sabo, P. Kruzliak, OE. Mustafina,
520    9_
$a In order to find new informative predictors of myocardial infarction, we performed an analysis of genotype frequencies of polymorphic markers of SELE (rs2076059, 3832T > C), SELP (rs6131, S290 N), SELL (rs1131498, F206L), ICAM1 (rs5498, K469E), VCAM1 (rs3917010, c.928 + 420A > C), PECAM1 (rs668, V125L), VEGFA (rs35569394, -2549(18)I/D), CCL2 (rs1024611, -2518A > G), NOS3 (rs1799983, E298D), and DDAH1 (rs669173, c.303 + 30998A > G) genes in the group of Russian men with myocardial infarction (N = 315) and the control group of corresponding ethnicity, gender, and age (N = 286). Using Markov chain Monte-Carlo method (APSampler), we found genotype combinations associated with increased and decreased risk of myocardial infarction. The most significant associations were detected for PECAM1*V/V + DDAH1*C (OR = 4.17 CI 1.56-11.15 Pperm = 0.005) SELE*C + VEGFA*I + CCL2*G + VCAM1*A + NOS3*D (OR = 2.74 CI 1.66-4.52 Pperm = 2.09 × 10(-5)), and VEGFA*D/D + CCL2*A + DDAH1*C (OR = 0.44 CI 0.28-0.7 Pperm = 7.89 × 10(-5)) genotype combinations.
650    _2
$a dospělí $7 D000328
650    _2
$a amidohydrolasy $x genetika $7 D000581
650    _2
$a antigeny CD31 $x genetika $7 D019408
650    _2
$a studie případů a kontrol $7 D016022
650    _2
$a frekvence genu $7 D005787
650    _2
$a genetické asociační studie $7 D056726
650    _2
$a genetická predispozice k nemoci $7 D020022
650    _2
$a genetické testování $7 D005820
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a infarkt myokardu $x etnologie $x genetika $7 D009203
650    _2
$a jednonukleotidový polymorfismus $7 D020641
651    _2
$a Rusko $7 D012426
655    _2
$a časopisecké články $7 D016428
700    1_
$a Timasheva, Yanina R $u Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences, Ufa, Russian Federation.
700    1_
$a Sadikova, Regina I $u Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences, Ufa, Russian Federation.
700    1_
$a Tuktarova, Ilsiyar A $u Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences, Ufa, Russian Federation.
700    1_
$a Erdman, Vera V $u Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences, Ufa, Russian Federation.
700    1_
$a Nikolaeva, Irina E $u Republic Centre for Cardiology, Ufa, Russian Federation.
700    1_
$a Sabo, Jan $u Department of Medical Physics and Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovak Republic.
700    1_
$a Kruzliak, Peter $u Department of Medical Physics and Biophysics, Faculty of Medicine, Pavol Jozef Safarik University, Trieda SNP 1, 040 11, Kosice, Slovak Republic. peter.kruzliak@savba.sk. 2nd Department of Internal Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic. peter.kruzliak@savba.sk. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic. peter.kruzliak@savba.sk.
700    1_
$a Mustafina, Olga E $u Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences, Ufa, Russian Federation.
773    0_
$w MED00003392 $t Molecular biology reports $x 1573-4978 $g Roč. 43, č. 1 (2016), s. 11-6
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26662939 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170103 $b ABA008
991    __
$a 20170120104924 $b ABA008
999    __
$a ok $b bmc $g 1179915 $s 961342
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 43 $c 1 $d 11-6 $e 20151212 $i 1573-4978 $m Molecular biology reports $n Mol Biol Rep $x MED00003392
LZP    __
$a Pubmed-20170103

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...