-
Je něco špatně v tomto záznamu ?
The pore architecture of the cystic fibrosis transmembrane conductance regulator channel revealed by co-mutation in pore-forming transmembrane regions
F. Qian, L. Liu, Z. Liu, C. Lu
Jazyk angličtina Země Česko
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 1991
Free Medical Journals
od 1998
ProQuest Central
od 2005-01-01
Medline Complete (EBSCOhost)
od 2006-01-01
Nursing & Allied Health Database (ProQuest)
od 2005-01-01
Health & Medicine (ProQuest)
od 2005-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1998
- MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- křečci praví MeSH
- membránové potenciály * MeSH
- metoda terčíkového zámku MeSH
- mutageneze cílená MeSH
- protein CFTR genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel contains 12 transmembrane (TM) regions that are presumed to form the channel pore. However, there is no direct evidence clearly illustrating the involvement of these transmembrane regions in the actual CFTR pore structure. To obtain insight into the architecture of the CFTR channel pore, we used patch clamp recording techniques and a strategy of co-mutagenesis of two potential pore-forming transmembrane regions (TM1 and TM6) to investigate the collaboration of these two TM regions. We performed a range of specific functional assays comparing the single channel conductance, anion binding, and anion selectivity properties of the co-mutated CFTR variants, and the results indicated that TM1 and TM6 play vital roles in forming the channel pore and, thus, determine the functional properties of the channel. Furthermore, we provided functional evidence that the amino acid threonine (T338) in TM6 has synergic effects with lysine (K95) in TM1. Therefore, we propose that these two residues have functional collaboration in the CFTR channel pore and may collectively form a selective filter.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17012745
- 003
- CZ-PrNML
- 005
- 20170424110714.0
- 007
- ta
- 008
- 170412s2016 xr d f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.33549/physiolres.933143 $2 doi
- 035 __
- $a (PubMed)27070741
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Qian, F. $u Laboratory of Neuronal Network and Brain Diseases Modulation, Yangtze University, Jingzhou, Hubei Province, China; Department of Medical Function, School of Medicine, Yangtze University, Jingzhou, Hubei Province, China
- 245 14
- $a The pore architecture of the cystic fibrosis transmembrane conductance regulator channel revealed by co-mutation in pore-forming transmembrane regions / $c F. Qian, L. Liu, Z. Liu, C. Lu
- 520 9_
- $a The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel contains 12 transmembrane (TM) regions that are presumed to form the channel pore. However, there is no direct evidence clearly illustrating the involvement of these transmembrane regions in the actual CFTR pore structure. To obtain insight into the architecture of the CFTR channel pore, we used patch clamp recording techniques and a strategy of co-mutagenesis of two potential pore-forming transmembrane regions (TM1 and TM6) to investigate the collaboration of these two TM regions. We performed a range of specific functional assays comparing the single channel conductance, anion binding, and anion selectivity properties of the co-mutated CFTR variants, and the results indicated that TM1 and TM6 play vital roles in forming the channel pore and, thus, determine the functional properties of the channel. Furthermore, we provided functional evidence that the amino acid threonine (T338) in TM6 has synergic effects with lysine (K95) in TM1. Therefore, we propose that these two residues have functional collaboration in the CFTR channel pore and may collectively form a selective filter.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a CHO buňky $7 D016466
- 650 _2
- $a křečci praví $7 D006224
- 650 _2
- $a Cricetulus $7 D003412
- 650 _2
- $a protein CFTR $x genetika $x metabolismus $7 D019005
- 650 12
- $a membránové potenciály $7 D008564
- 650 _2
- $a mutageneze cílená $7 D016297
- 650 _2
- $a metoda terčíkového zámku $7 D018408
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Liu, L. $u Laboratory of Neuronal Network and Brain Diseases Modulation, Yangtze University, Jingzhou, Hubei Province, China; Department of Medical Function, School of Medicine, Yangtze University, Jingzhou, Hubei Province, China
- 700 1_
- $a Liu, Z. $u Department of Medical Function, School of Medicine, Yangtze University, Jingzhou, Hubei Province, China
- 700 1_
- $a Lu, C. $u Laboratory of Neuronal Network and Brain Diseases Modulation, Yangtze University, Jingzhou, Hubei Province, China
- 773 0_
- $w MED00003824 $t Physiological research $x 1802-9973 $g Roč. 65, č. 3 (2016), s. 505-515
- 856 41
- $u http://www.biomed.cas.cz/physiolres/ $y domovská stránka časopisu
- 910 __
- $a ABA008 $b A 4120 $c 266 $y 4 $z 0
- 990 __
- $a 20170412 $b ABA008
- 991 __
- $a 20170421075456 $b ABA008
- 999 __
- $a ok $b bmc $g 1201680 $s 973518
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 65 $c 3 $d 505-515 $e 20160412 $i 1802-9973 $m Physiological research $n Physiol. Res. (Print) $x MED00003824
- LZP __
- $b NLK118 $a Pubmed-20170412