-
Je něco špatně v tomto záznamu ?
Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds
V. Uher, P. Gajdoš, M. Radecký, V. Snášel,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Free Medical Journals
od 2007
PubMed Central
od 2007
Europe PubMed Central
od 2007
ProQuest Central
od 2008-01-01 do 2025-01-31
Open Access Digital Library
od 2007-01-01
Open Access Digital Library
od 2007-01-01
Open Access Digital Library
od 2007-06-25
Medline Complete (EBSCOhost)
od 2007-01-01 do 2023-06-28
Health & Medicine (ProQuest)
od 2008-01-01 do 2025-01-31
Wiley-Blackwell Open Access Titles
od 2007
PubMed
27974884
DOI
10.1155/2016/6329530
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- biologická evoluce * MeSH
- datové soubory jako téma * MeSH
- interpretace obrazu počítačem * MeSH
- rozpoznávání automatizované * MeSH
- Publikační typ
- časopisecké články MeSH
The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17013341
- 003
- CZ-PrNML
- 005
- 20170428110924.0
- 007
- ta
- 008
- 170413s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1155/2016/6329530 $2 doi
- 035 __
- $a (PubMed)27974884
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Uher, Vojtěch $u Department of Computer Science and National Supercomputing Center, VŠB-Technical University of Ostrava, Ostrava, Czech Republic.
- 245 10
- $a Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds / $c V. Uher, P. Gajdoš, M. Radecký, V. Snášel,
- 520 9_
- $a The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.
- 650 12
- $a algoritmy $7 D000465
- 650 12
- $a biologická evoluce $7 D005075
- 650 12
- $a datové soubory jako téma $7 D066264
- 650 12
- $a interpretace obrazu počítačem $7 D007090
- 650 12
- $a rozpoznávání automatizované $7 D010363
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Gajdoš, Petr $u Department of Computer Science and National Supercomputing Center, VŠB-Technical University of Ostrava, Ostrava, Czech Republic.
- 700 1_
- $a Radecký, Michal $u Department of Computer Science and National Supercomputing Center, VŠB-Technical University of Ostrava, Ostrava, Czech Republic.
- 700 1_
- $a Snášel, Václav $u Department of Computer Science and National Supercomputing Center, VŠB-Technical University of Ostrava, Ostrava, Czech Republic.
- 773 0_
- $w MED00163305 $t Computational intelligence and neuroscience $x 1687-5273 $g Roč. 2016, č. - (2016), s. 6329530
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27974884 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170413 $b ABA008
- 991 __
- $a 20170428111245 $b ABA008
- 999 __
- $a ok $b bmc $g 1199806 $s 974119
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 2016 $c - $d 6329530 $e 20161115 $i 1687-5273 $m Computational intelligence and neuroscience $n Comput Intell Neurosci $x MED00163305
- LZP __
- $a Pubmed-20170413