Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds

V. Uher, P. Gajdoš, M. Radecký, V. Snášel,

. 2016 ; 2016 (-) : 6329530. [pub] 20161115

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17013341

The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17013341
003      
CZ-PrNML
005      
20170428110924.0
007      
ta
008      
170413s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1155/2016/6329530 $2 doi
035    __
$a (PubMed)27974884
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Uher, Vojtěch $u Department of Computer Science and National Supercomputing Center, VŠB-Technical University of Ostrava, Ostrava, Czech Republic.
245    10
$a Utilization of the Discrete Differential Evolution for Optimization in Multidimensional Point Clouds / $c V. Uher, P. Gajdoš, M. Radecký, V. Snášel,
520    9_
$a The Differential Evolution (DE) is a widely used bioinspired optimization algorithm developed by Storn and Price. It is popular for its simplicity and robustness. This algorithm was primarily designed for real-valued problems and continuous functions, but several modified versions optimizing both integer and discrete-valued problems have been developed. The discrete-coded DE has been mostly used for combinatorial problems in a set of enumerative variants. However, the DE has a great potential in the spatial data analysis and pattern recognition. This paper formulates the problem as a search of a combination of distinct vertices which meet the specified conditions. It proposes a novel approach called the Multidimensional Discrete Differential Evolution (MDDE) applying the principle of the discrete-coded DE in discrete point clouds (PCs). The paper examines the local searching abilities of the MDDE and its convergence to the global optimum in the PCs. The multidimensional discrete vertices cannot be simply ordered to get a convenient course of the discrete data, which is crucial for good convergence of a population. A novel mutation operator utilizing linear ordering of spatial data based on the space filling curves is introduced. The algorithm is tested on several spatial datasets and optimization problems. The experiments show that the MDDE is an efficient and fast method for discrete optimizations in the multidimensional point clouds.
650    12
$a algoritmy $7 D000465
650    12
$a biologická evoluce $7 D005075
650    12
$a datové soubory jako téma $7 D066264
650    12
$a interpretace obrazu počítačem $7 D007090
650    12
$a rozpoznávání automatizované $7 D010363
655    _2
$a časopisecké články $7 D016428
700    1_
$a Gajdoš, Petr $u Department of Computer Science and National Supercomputing Center, VŠB-Technical University of Ostrava, Ostrava, Czech Republic.
700    1_
$a Radecký, Michal $u Department of Computer Science and National Supercomputing Center, VŠB-Technical University of Ostrava, Ostrava, Czech Republic.
700    1_
$a Snášel, Václav $u Department of Computer Science and National Supercomputing Center, VŠB-Technical University of Ostrava, Ostrava, Czech Republic.
773    0_
$w MED00163305 $t Computational intelligence and neuroscience $x 1687-5273 $g Roč. 2016, č. - (2016), s. 6329530
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27974884 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170413 $b ABA008
991    __
$a 20170428111245 $b ABA008
999    __
$a ok $b bmc $g 1199806 $s 974119
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 2016 $c - $d 6329530 $e 20161115 $i 1687-5273 $m Computational intelligence and neuroscience $n Comput Intell Neurosci $x MED00163305
LZP    __
$a Pubmed-20170413

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...