-
Je něco špatně v tomto záznamu ?
Retinal status analysis method based on feature extraction and quantitative grading in OCT images
D. Fu, H. Tong, S. Zheng, L. Luo, F. Gao, J. Minar,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
NLK
BioMedCentral
od 2002-12-01
BioMedCentral Open Access
od 2002
Directory of Open Access Journals
od 2002
Free Medical Journals
od 2002
Freely Accessible Science Journals
od 2002
PubMed Central
od 2002
Europe PubMed Central
od 2002
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2002-01-01
Open Access Digital Library
od 2002-01-01
Open Access Digital Library
od 2002-05-01
Medline Complete (EBSCOhost)
od 2002-05-14
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2002
Springer Nature OA/Free Journals
od 2002-12-01
- MeSH
- diagnóza počítačová MeSH
- dospělí MeSH
- fundus oculi MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- optická koherentní tomografie * MeSH
- počítačové zpracování obrazu * MeSH
- poměr signál - šum MeSH
- retina diagnostické zobrazování MeSH
- rozhodování MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Optical coherence tomography (OCT) is widely used in ophthalmology for viewing the morphology of the retina, which is important for disease detection and assessing therapeutic effect. The diagnosis of retinal diseases is based primarily on the subjective analysis of OCT images by trained ophthalmologists. This paper describes an OCT images automatic analysis method for computer-aided disease diagnosis and it is a critical part of the eye fundus diagnosis. METHODS: This study analyzed 300 OCT images acquired by Optovue Avanti RTVue XR (Optovue Corp., Fremont, CA). Firstly, the normal retinal reference model based on retinal boundaries was presented. Subsequently, two kinds of quantitative methods based on geometric features and morphological features were proposed. This paper put forward a retinal abnormal grading decision-making method which was used in actual analysis and evaluation of multiple OCT images. RESULTS: This paper showed detailed analysis process by four retinal OCT images with different abnormal degrees. The final grading results verified that the analysis method can distinguish abnormal severity and lesion regions. This paper presented the simulation of the 150 test images, where the results of analysis of retinal status showed that the sensitivity was 0.94 and specificity was 0.92.The proposed method can speed up diagnostic process and objectively evaluate the retinal status. CONCLUSIONS: This paper aims on studies of retinal status automatic analysis method based on feature extraction and quantitative grading in OCT images. The proposed method can obtain the parameters and the features that are associated with retinal morphology. Quantitative analysis and evaluation of these features are combined with reference model which can realize the target image abnormal judgment and provide a reference for disease diagnosis.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17013644
- 003
- CZ-PrNML
- 005
- 20170418105812.0
- 007
- ta
- 008
- 170413s2016 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s12938-016-0206-x $2 doi
- 035 __
- $a (PubMed)27449218
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Fu, Dongmei $u School of Automation and Electrical Engineering, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing, China. fdm2003@163.com.
- 245 10
- $a Retinal status analysis method based on feature extraction and quantitative grading in OCT images / $c D. Fu, H. Tong, S. Zheng, L. Luo, F. Gao, J. Minar,
- 520 9_
- $a BACKGROUND: Optical coherence tomography (OCT) is widely used in ophthalmology for viewing the morphology of the retina, which is important for disease detection and assessing therapeutic effect. The diagnosis of retinal diseases is based primarily on the subjective analysis of OCT images by trained ophthalmologists. This paper describes an OCT images automatic analysis method for computer-aided disease diagnosis and it is a critical part of the eye fundus diagnosis. METHODS: This study analyzed 300 OCT images acquired by Optovue Avanti RTVue XR (Optovue Corp., Fremont, CA). Firstly, the normal retinal reference model based on retinal boundaries was presented. Subsequently, two kinds of quantitative methods based on geometric features and morphological features were proposed. This paper put forward a retinal abnormal grading decision-making method which was used in actual analysis and evaluation of multiple OCT images. RESULTS: This paper showed detailed analysis process by four retinal OCT images with different abnormal degrees. The final grading results verified that the analysis method can distinguish abnormal severity and lesion regions. This paper presented the simulation of the 150 test images, where the results of analysis of retinal status showed that the sensitivity was 0.94 and specificity was 0.92.The proposed method can speed up diagnostic process and objectively evaluate the retinal status. CONCLUSIONS: This paper aims on studies of retinal status automatic analysis method based on feature extraction and quantitative grading in OCT images. The proposed method can obtain the parameters and the features that are associated with retinal morphology. Quantitative analysis and evaluation of these features are combined with reference model which can realize the target image abnormal judgment and provide a reference for disease diagnosis.
- 650 _2
- $a mladiství $7 D000293
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a rozhodování $7 D003657
- 650 _2
- $a diagnóza počítačová $7 D003936
- 650 _2
- $a fundus oculi $7 D005654
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a počítačové zpracování obrazu $7 D007091
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a retina $x diagnostické zobrazování $7 D012160
- 650 _2
- $a poměr signál - šum $7 D059629
- 650 12
- $a optická koherentní tomografie $7 D041623
- 650 _2
- $a mladý dospělý $7 D055815
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Tong, Hejun $u School of Automation and Electrical Engineering, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing, China.
- 700 1_
- $a Zheng, Shuang $u School of Automation and Electrical Engineering, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing, China.
- 700 1_
- $a Luo, Ling $u The 306th Hospital of People's Liberation Army, Beijing, China.
- 700 1_
- $a Gao, Fulin $u The 306th Hospital of People's Liberation Army, Beijing, China.
- 700 1_
- $a Minar, Jiri $u Dept. of Telecommunications, Faculty of Electrical Engineering and Communication, Brno University of Technology, Czech, Brno, Czech Republic.
- 773 0_
- $w MED00008166 $t Biomedical engineering online $x 1475-925X $g Roč. 15, č. 1 (2016), s. 87
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27449218 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170413 $b ABA008
- 991 __
- $a 20170418110120 $b ABA008
- 999 __
- $a ok $b bmc $g 1200109 $s 974422
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 15 $c 1 $d 87 $e 20160722 $i 1475-925X $m Biomedical engineering online $n Biomed Eng Online $x MED00008166
- LZP __
- $a Pubmed-20170413