-
Je něco špatně v tomto záznamu ?
An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective
J. Faigl,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Free Medical Journals
od 2007
PubMed Central
od 2007
Europe PubMed Central
od 2007
ProQuest Central
od 2008-01-01 do 2025-01-31
Open Access Digital Library
od 2007-01-01
Open Access Digital Library
od 2007-01-01
Open Access Digital Library
od 2007-06-25
Medline Complete (EBSCOhost)
od 2007-01-01 do 2023-06-28
Health & Medicine (ProQuest)
od 2008-01-01 do 2025-01-31
Wiley-Blackwell Open Access Titles
od 2007
PubMed
27340395
DOI
10.1155/2016/2720630
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- cestování MeSH
- lidé MeSH
- neuronové sítě * MeSH
- pohyb těles * MeSH
- robotika * MeSH
- rozpoznávání automatizované * MeSH
- umělá inteligence * MeSH
- vnímání prostoru MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to "see" the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17013746
- 003
- CZ-PrNML
- 005
- 20170428111001.0
- 007
- ta
- 008
- 170413s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1155/2016/2720630 $2 doi
- 035 __
- $a (PubMed)27340395
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Faigl, Jan $u Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague 6, Czech Republic.
- 245 13
- $a An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective / $c J. Faigl,
- 520 9_
- $a In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to "see" the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning.
- 650 12
- $a algoritmy $7 D000465
- 650 12
- $a umělá inteligence $7 D001185
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a pohyb těles $7 D009038
- 650 12
- $a neuronové sítě $7 D016571
- 650 12
- $a rozpoznávání automatizované $7 D010363
- 650 12
- $a robotika $7 D012371
- 650 _2
- $a vnímání prostoru $7 D013028
- 650 _2
- $a cestování $7 D014195
- 655 _2
- $a časopisecké články $7 D016428
- 773 0_
- $w MED00163305 $t Computational intelligence and neuroscience $x 1687-5273 $g Roč. 2016, č. - (2016), s. 2720630
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27340395 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170413 $b ABA008
- 991 __
- $a 20170428111322 $b ABA008
- 999 __
- $a ok $b bmc $g 1200211 $s 974524
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 2016 $c - $d 2720630 $e 20160602 $i 1687-5273 $m Computational intelligence and neuroscience $n Comput Intell Neurosci $x MED00163305
- LZP __
- $a Pubmed-20170413