Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective

J. Faigl,

. 2016 ; 2016 (-) : 2720630. [pub] 20160602

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17013746

In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to "see" the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17013746
003      
CZ-PrNML
005      
20170428111001.0
007      
ta
008      
170413s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1155/2016/2720630 $2 doi
035    __
$a (PubMed)27340395
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Faigl, Jan $u Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague 6, Czech Republic.
245    13
$a An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective / $c J. Faigl,
520    9_
$a In this paper, Self-Organizing Map (SOM) for the Multiple Traveling Salesman Problem (MTSP) with minmax objective is applied to the robotic problem of multigoal path planning in the polygonal domain. The main difficulty of such SOM deployment is determination of collision-free paths among obstacles that is required to evaluate the neuron-city distances in the winner selection phase of unsupervised learning. Moreover, a collision-free path is also needed in the adaptation phase, where neurons are adapted towards the presented input signal (city) to the network. Simple approximations of the shortest path are utilized to address this issue and solve the robotic MTSP by SOM. Suitability of the proposed approximations is verified in the context of cooperative inspection, where cities represent sensing locations that guarantee to "see" the whole robots' workspace. The inspection task formulated as the MTSP-Minmax is solved by the proposed SOM approach and compared with the combinatorial heuristic GENIUS. The results indicate that the proposed approach provides competitive results to GENIUS and support applicability of SOM for robotic multigoal path planning with a group of cooperating mobile robots. The proposed combination of approximate shortest paths with unsupervised learning opens further applications of SOM in the field of robotic planning.
650    12
$a algoritmy $7 D000465
650    12
$a umělá inteligence $7 D001185
650    _2
$a lidé $7 D006801
650    12
$a pohyb těles $7 D009038
650    12
$a neuronové sítě $7 D016571
650    12
$a rozpoznávání automatizované $7 D010363
650    12
$a robotika $7 D012371
650    _2
$a vnímání prostoru $7 D013028
650    _2
$a cestování $7 D014195
655    _2
$a časopisecké články $7 D016428
773    0_
$w MED00163305 $t Computational intelligence and neuroscience $x 1687-5273 $g Roč. 2016, č. - (2016), s. 2720630
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27340395 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170413 $b ABA008
991    __
$a 20170428111322 $b ABA008
999    __
$a ok $b bmc $g 1200211 $s 974524
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 2016 $c - $d 2720630 $e 20160602 $i 1687-5273 $m Computational intelligence and neuroscience $n Comput Intell Neurosci $x MED00163305
LZP    __
$a Pubmed-20170413

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...