Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes

H. Staňková, AR. Hastie, S. Chan, J. Vrána, Z. Tulpová, M. Kubaláková, P. Visendi, S. Hayashi, M. Luo, J. Batley, D. Edwards, J. Doležel, H. Šimková,

. 2016 ; 14 (7) : 1523-31. [pub] 20160123

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc17014141

The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17014141
003      
CZ-PrNML
005      
20170426103353.0
007      
ta
008      
170413s2016 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/pbi.12513 $2 doi
035    __
$a (PubMed)26801360
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Staňková, Helena $u Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
245    10
$a BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes / $c H. Staňková, AR. Hastie, S. Chan, J. Vrána, Z. Tulpová, M. Kubaláková, P. Visendi, S. Hayashi, M. Luo, J. Batley, D. Edwards, J. Doležel, H. Šimková,
520    9_
$a The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules.
650    _2
$a biotechnologie $x metody $7 D001709
650    _2
$a mapování chromozomů $x metody $7 D002874
650    _2
$a umělé bakteriální chromozomy $7 D022202
650    _2
$a chromozomy rostlin $x genetika $7 D032461
650    12
$a genom rostlinný $7 D018745
650    _2
$a sekvenční analýza DNA $x metody $7 D017422
650    _2
$a tandemové repetitivní sekvence $7 D020080
650    _2
$a pšenice $x genetika $7 D014908
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Hastie, Alex R $u BioNano Genomics, San Diego, CA, USA.
700    1_
$a Chan, Saki $u BioNano Genomics, San Diego, CA, USA.
700    1_
$a Vrána, Jan $u Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
700    1_
$a Tulpová, Zuzana $u Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
700    1_
$a Kubaláková, Marie $u Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
700    1_
$a Visendi, Paul $u Australian Centre for Plant Functional Genomics, University of Queensland, Brisbane, QLD, Australia.
700    1_
$a Hayashi, Satomi $u School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia.
700    1_
$a Luo, Mingcheng $u Department of Plant Sciences, University of California, Davis, CA, USA.
700    1_
$a Batley, Jacqueline $u School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia. School of Plant Biology, University of Western Australia, Crawley, WA, Australia.
700    1_
$a Edwards, David $u School of Plant Biology, University of Western Australia, Crawley, WA, Australia.
700    1_
$a Doležel, Jaroslav $u Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
700    1_
$a Šimková, Hana $u Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
773    0_
$w MED00007694 $t Plant biotechnology journal $x 1467-7652 $g Roč. 14, č. 7 (2016), s. 1523-31
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26801360 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170413 $b ABA008
991    __
$a 20170426103711 $b ABA008
999    __
$a ok $b bmc $g 1200606 $s 974919
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 14 $c 7 $d 1523-31 $e 20160123 $i 1467-7652 $m Plant biotechnology journal $n Plant Biotechnol J $x MED00007694
LZP    __
$a Pubmed-20170413

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...