-
Je něco špatně v tomto záznamu ?
Modeling the light-induced electric potential difference (ΔΨ), the pH difference (ΔpH) and the proton motive force across the thylakoid membrane in C3 leaves
H. Lyu, D. Lazár,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
- MeSH
- biologické modely * MeSH
- časové faktory MeSH
- koncentrace vodíkových iontů účinky záření MeSH
- listy rostlin metabolismus účinky záření MeSH
- membránové potenciály účinky záření MeSH
- počítačová simulace MeSH
- protonmotorická síla účinky záření MeSH
- protony MeSH
- pufry MeSH
- světlo * MeSH
- transport elektronů MeSH
- tylakoidy metabolismus účinky záření MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
A model was constructed which includes electron transport (linear and cyclic and Mehler type reaction) coupled to proton translocation, counter ion movement, ATP synthesis, and Calvin-Benson cycle. The focus is on modeling of the light-induced total electric potential difference (ΔΨ) which in this model originates from the bulk phase electric potential difference (ΔΨb), the localized electric potential difference (ΔΨc), as well as the surface electric potential difference (ΔΨs). The measured dual wavelength transmittance signal (ΔA515-560nm, electrochromic shift) was used as a proxy for experimental ΔΨ. The predictions for theoretical ΔΨ vary with assumed contribution of ΔΨs, which might imply that the measured ΔA515-560nm trace on a long time scale reflects the interplay of the ΔΨ components. Simulations also show that partitioning of proton motive force (pmf) to ΔΨb and ΔpH components is sensitive to the stoichiometric ratio of H(+)/ATP, energy barrier for ATP synthesis, ionic strength, buffer capacity and light intensity. Our model shows that high buffer capacity promotes the establishment of ΔΨb, while the formation of pHi minimum is not 'dissipated' but 'postponed' until it reaches the same level as that for low buffer capacity. Under physiologically optimal conditions, the output of the model shows that at steady state in light, the ΔpH component is the main contributor to pmf to drive ATP synthesis while a low ΔΨb persists energizing the membrane. Our model predicts 11mV as the resting electric potential difference across the thylakoid membrane in dark. We suggest that the model presented in this work can be integrated as a module into a more comprehensive model of oxygenic photosynthesis.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17023525
- 003
- CZ-PrNML
- 005
- 20170908095302.0
- 007
- ta
- 008
- 170720s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jtbi.2016.10.017 $2 doi
- 035 __
- $a (PubMed)27816676
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Lyu, Hui $u Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
- 245 10
- $a Modeling the light-induced electric potential difference (ΔΨ), the pH difference (ΔpH) and the proton motive force across the thylakoid membrane in C3 leaves / $c H. Lyu, D. Lazár,
- 520 9_
- $a A model was constructed which includes electron transport (linear and cyclic and Mehler type reaction) coupled to proton translocation, counter ion movement, ATP synthesis, and Calvin-Benson cycle. The focus is on modeling of the light-induced total electric potential difference (ΔΨ) which in this model originates from the bulk phase electric potential difference (ΔΨb), the localized electric potential difference (ΔΨc), as well as the surface electric potential difference (ΔΨs). The measured dual wavelength transmittance signal (ΔA515-560nm, electrochromic shift) was used as a proxy for experimental ΔΨ. The predictions for theoretical ΔΨ vary with assumed contribution of ΔΨs, which might imply that the measured ΔA515-560nm trace on a long time scale reflects the interplay of the ΔΨ components. Simulations also show that partitioning of proton motive force (pmf) to ΔΨb and ΔpH components is sensitive to the stoichiometric ratio of H(+)/ATP, energy barrier for ATP synthesis, ionic strength, buffer capacity and light intensity. Our model shows that high buffer capacity promotes the establishment of ΔΨb, while the formation of pHi minimum is not 'dissipated' but 'postponed' until it reaches the same level as that for low buffer capacity. Under physiologically optimal conditions, the output of the model shows that at steady state in light, the ΔpH component is the main contributor to pmf to drive ATP synthesis while a low ΔΨb persists energizing the membrane. Our model predicts 11mV as the resting electric potential difference across the thylakoid membrane in dark. We suggest that the model presented in this work can be integrated as a module into a more comprehensive model of oxygenic photosynthesis.
- 650 _2
- $a pufry $7 D002021
- 650 _2
- $a uhlík $x metabolismus $7 D002244
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a transport elektronů $7 D004579
- 650 _2
- $a koncentrace vodíkových iontů $x účinky záření $7 D006863
- 650 12
- $a světlo $7 D008027
- 650 _2
- $a membránové potenciály $x účinky záření $7 D008564
- 650 12
- $a biologické modely $7 D008954
- 650 _2
- $a listy rostlin $x metabolismus $x účinky záření $7 D018515
- 650 _2
- $a protonmotorická síla $x účinky záření $7 D018892
- 650 _2
- $a protony $7 D011522
- 650 _2
- $a tylakoidy $x metabolismus $x účinky záření $7 D020524
- 650 _2
- $a časové faktory $7 D013997
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Lazár, Dušan $u Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic. Electronic address: lazard@seznam.cz.
- 773 0_
- $w MED00003018 $t Journal of theoretical biology $x 1095-8541 $g Roč. 413, č. - (2017), s. 11-23
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27816676 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170720 $b ABA008
- 991 __
- $a 20170908095903 $b ABA008
- 999 __
- $a ok $b bmc $g 1239206 $s 984438
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 413 $c - $d 11-23 $e 20161102 $i 1095-8541 $m Journal of theoretical biology $n J Theor Biol $x MED00003018
- LZP __
- $a Pubmed-20170720