-
Something wrong with this record ?
Prediction of Kunitz ion channel effectors and protease inhibitors from the Ixodes ricinus sialome
JJ. Valdés, IH. Moal,
Language English Country Netherlands
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Algorithms MeSH
- Protease Inhibitors MeSH
- Ion Channels genetics MeSH
- Ixodes genetics MeSH
- Protein Domains MeSH
- Arthropod Proteins genetics MeSH
- Amino Acid Sequence MeSH
- Sequence Analysis, DNA MeSH
- Cluster Analysis MeSH
- Salivary Proteins and Peptides genetics MeSH
- Transcriptome * MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In the next generation sequencing era we are encountering hundreds of thousands of sequences from specific organisms. Such massive data must be accurately classified both functionally and structurally. Determining appropriate sequences with a specific function from next generation sequencing, however, is a daunting experimental task. A recent salivary gland transcriptome from the hard tick Ixodes ricinus, a European disease vector, has been made publicly available. Among the protein families sequenced by the salivary gland transcriptome of I. ricinus, the Kunitz-domain is one of the highly represented protein families. Thus far, recent tick transciptomes solely classify (computationally) Kunitz sequences as putative serine protease inhibitors. We present here a novel method using a machine-learning algorithm to "fish" for candidate ion-channel effectors and loss of serine protease inhibitor function within the Kunitz-domain protein family of the I. ricinus salivary gland transcriptome. The models, data and scripts used in this work are available online from http://life.bsc.es/pid/web/imoal/kunitz-classification.html.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17024257
- 003
- CZ-PrNML
- 005
- 20170830103238.0
- 007
- ta
- 008
- 170720s2014 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.ttbdis.2014.07.016 $2 doi
- 035 __
- $a (PubMed)25108785
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Valdés, James J $u Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, 37005 České Budějovice, Czech Republic. Electronic address: valdjj@gmail.com.
- 245 10
- $a Prediction of Kunitz ion channel effectors and protease inhibitors from the Ixodes ricinus sialome / $c JJ. Valdés, IH. Moal,
- 520 9_
- $a In the next generation sequencing era we are encountering hundreds of thousands of sequences from specific organisms. Such massive data must be accurately classified both functionally and structurally. Determining appropriate sequences with a specific function from next generation sequencing, however, is a daunting experimental task. A recent salivary gland transcriptome from the hard tick Ixodes ricinus, a European disease vector, has been made publicly available. Among the protein families sequenced by the salivary gland transcriptome of I. ricinus, the Kunitz-domain is one of the highly represented protein families. Thus far, recent tick transciptomes solely classify (computationally) Kunitz sequences as putative serine protease inhibitors. We present here a novel method using a machine-learning algorithm to "fish" for candidate ion-channel effectors and loss of serine protease inhibitor function within the Kunitz-domain protein family of the I. ricinus salivary gland transcriptome. The models, data and scripts used in this work are available online from http://life.bsc.es/pid/web/imoal/kunitz-classification.html.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a proteiny členovců $x genetika $7 D060829
- 650 _2
- $a shluková analýza $7 D016000
- 650 _2
- $a vysoce účinné nukleotidové sekvenování $7 D059014
- 650 _2
- $a iontové kanály $x genetika $7 D007473
- 650 _2
- $a klíště $x genetika $7 D018884
- 650 _2
- $a inhibitory proteas $7 D011480
- 650 _2
- $a proteinové domény $7 D000072417
- 650 _2
- $a slinné proteiny a peptidy $x genetika $7 D012471
- 650 _2
- $a sekvenční analýza DNA $7 D017422
- 650 12
- $a transkriptom $7 D059467
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Moal, Iain H $u Joint BSC-IRB Research Program in Computational Biology, Life Science Department, Barcelona Supercomputing Center, Barcelona 08034, Spain.
- 773 0_
- $w MED00167597 $t Ticks and tick-borne diseases $x 1877-9603 $g Roč. 5, č. 6 (2014), s. 947-50
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25108785 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170720 $b ABA008
- 991 __
- $a 20170830103826 $b ABA008
- 999 __
- $a ok $b bmc $g 1239938 $s 985170
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2014 $b 5 $c 6 $d 947-50 $e 20140729 $i 1877-9603 $m Ticks and tick-borne diseases $n Ticks Tick Borne Dis $x MED00167597
- LZP __
- $a Pubmed-20170720