• Je něco špatně v tomto záznamu ?

Prediction of Kunitz ion channel effectors and protease inhibitors from the Ixodes ricinus sialome

JJ. Valdés, IH. Moal,

. 2014 ; 5 (6) : 947-50. [pub] 20140729

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc17024257

In the next generation sequencing era we are encountering hundreds of thousands of sequences from specific organisms. Such massive data must be accurately classified both functionally and structurally. Determining appropriate sequences with a specific function from next generation sequencing, however, is a daunting experimental task. A recent salivary gland transcriptome from the hard tick Ixodes ricinus, a European disease vector, has been made publicly available. Among the protein families sequenced by the salivary gland transcriptome of I. ricinus, the Kunitz-domain is one of the highly represented protein families. Thus far, recent tick transciptomes solely classify (computationally) Kunitz sequences as putative serine protease inhibitors. We present here a novel method using a machine-learning algorithm to "fish" for candidate ion-channel effectors and loss of serine protease inhibitor function within the Kunitz-domain protein family of the I. ricinus salivary gland transcriptome. The models, data and scripts used in this work are available online from http://life.bsc.es/pid/web/imoal/kunitz-classification.html.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17024257
003      
CZ-PrNML
005      
20170830103238.0
007      
ta
008      
170720s2014 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.ttbdis.2014.07.016 $2 doi
035    __
$a (PubMed)25108785
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Valdés, James J $u Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, 37005 České Budějovice, Czech Republic. Electronic address: valdjj@gmail.com.
245    10
$a Prediction of Kunitz ion channel effectors and protease inhibitors from the Ixodes ricinus sialome / $c JJ. Valdés, IH. Moal,
520    9_
$a In the next generation sequencing era we are encountering hundreds of thousands of sequences from specific organisms. Such massive data must be accurately classified both functionally and structurally. Determining appropriate sequences with a specific function from next generation sequencing, however, is a daunting experimental task. A recent salivary gland transcriptome from the hard tick Ixodes ricinus, a European disease vector, has been made publicly available. Among the protein families sequenced by the salivary gland transcriptome of I. ricinus, the Kunitz-domain is one of the highly represented protein families. Thus far, recent tick transciptomes solely classify (computationally) Kunitz sequences as putative serine protease inhibitors. We present here a novel method using a machine-learning algorithm to "fish" for candidate ion-channel effectors and loss of serine protease inhibitor function within the Kunitz-domain protein family of the I. ricinus salivary gland transcriptome. The models, data and scripts used in this work are available online from http://life.bsc.es/pid/web/imoal/kunitz-classification.html.
650    _2
$a algoritmy $7 D000465
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a zvířata $7 D000818
650    _2
$a proteiny členovců $x genetika $7 D060829
650    _2
$a shluková analýza $7 D016000
650    _2
$a vysoce účinné nukleotidové sekvenování $7 D059014
650    _2
$a iontové kanály $x genetika $7 D007473
650    _2
$a klíště $x genetika $7 D018884
650    _2
$a inhibitory proteas $7 D011480
650    _2
$a proteinové domény $7 D000072417
650    _2
$a slinné proteiny a peptidy $x genetika $7 D012471
650    _2
$a sekvenční analýza DNA $7 D017422
650    12
$a transkriptom $7 D059467
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Moal, Iain H $u Joint BSC-IRB Research Program in Computational Biology, Life Science Department, Barcelona Supercomputing Center, Barcelona 08034, Spain.
773    0_
$w MED00167597 $t Ticks and tick-borne diseases $x 1877-9603 $g Roč. 5, č. 6 (2014), s. 947-50
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25108785 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20170720 $b ABA008
991    __
$a 20170830103826 $b ABA008
999    __
$a ok $b bmc $g 1239938 $s 985170
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 5 $c 6 $d 947-50 $e 20140729 $i 1877-9603 $m Ticks and tick-borne diseases $n Ticks Tick Borne Dis $x MED00167597
LZP    __
$a Pubmed-20170720

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace