-
Je něco špatně v tomto záznamu ?
Stable isotope tracing of Ni and Cu pollution in North-East Norway: Potentials and drawbacks
H. Šillerová, V. Chrastný, M. Vítková, A. Francová, J. Jehlička, MR. Gutsch, J. Kocourková, PE. Aspholm, LO. Nilsson, TF. Berglen, HKB. Jensen, M. Komárek,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
- MeSH
- chemická frakcionace MeSH
- izotopy analýza MeSH
- kovy MeSH
- měď analýza MeSH
- monitorování životního prostředí metody MeSH
- nikl analýza MeSH
- půda MeSH
- sníh MeSH
- znečištění životního prostředí statistika a číselné údaje MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Norsko MeSH
The use of Ni and Cu isotopes for tracing contamination sources in the environment remains a challenging task due to the limited information about the influence of various biogeochemical processes influencing stable isotope fractionation. This work focuses on a relatively simple system in north-east Norway with two possible endmembers (smelter-bedrock) and various environmental samples (snow, soil, lichens, PM10). In general, the whole area is enriched in heavy Ni and Cu isotopes highlighting the impact of the smelting activity. However, the environmental samples exhibit a large range of δ(60)Ni (-0.01 ± 0.03‰ to 1.71 ± 0.02‰) and δ(65)Cu (-0.06 ± 0.06‰ to -3.94 ± 0.3‰) values which exceeds the range of δ(60)Ni and δ(65)Cu values determined in the smelter, i.e. in feeding material and slag (δ(60)Ni from 0.56 ± 0.06‰ to 1.00 ± 0.06‰ and δ(65)Cu from -1.67 ± 0.04‰ to -1.68 ± 0.15‰). The shift toward heavier Ni and Cu δ values was the most significant in organic rich topsoil samples in the case of Ni (δ(60)Ni up to 1.71 ± 0.02‰) and in lichens and snow in the case of Cu (δ(65)Cu up to -0.06 ± 0.06‰ and -0.24 ± 0.04‰, respectively). These data suggest an important biological and biochemical fractionation (microorganisms and/or metal uptake by higher plants, organo-complexation etc.) of Ni and Cu isotopes, which should be quantified separately for each process and taken into account when using the stable isotopes for tracing contamination in the environment.
Department Urban Environment and Industry NILU Norwegian Institute for Air Research Kjeller Norway
Geological Survey of Norway 7491 Trondheim Norway
NIBIO Norwegian Institute of Bioeconomy Research P O Box 115 NO 1431 Ås Norway
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17030798
- 003
- CZ-PrNML
- 005
- 20171030120547.0
- 007
- ta
- 008
- 171025s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.envpol.2017.05.030 $2 doi
- 035 __
- $a (PubMed)28528262
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Šillerová, Hana $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic. Electronic address: sillerovah@fzp.czu.cz.
- 245 10
- $a Stable isotope tracing of Ni and Cu pollution in North-East Norway: Potentials and drawbacks / $c H. Šillerová, V. Chrastný, M. Vítková, A. Francová, J. Jehlička, MR. Gutsch, J. Kocourková, PE. Aspholm, LO. Nilsson, TF. Berglen, HKB. Jensen, M. Komárek,
- 520 9_
- $a The use of Ni and Cu isotopes for tracing contamination sources in the environment remains a challenging task due to the limited information about the influence of various biogeochemical processes influencing stable isotope fractionation. This work focuses on a relatively simple system in north-east Norway with two possible endmembers (smelter-bedrock) and various environmental samples (snow, soil, lichens, PM10). In general, the whole area is enriched in heavy Ni and Cu isotopes highlighting the impact of the smelting activity. However, the environmental samples exhibit a large range of δ(60)Ni (-0.01 ± 0.03‰ to 1.71 ± 0.02‰) and δ(65)Cu (-0.06 ± 0.06‰ to -3.94 ± 0.3‰) values which exceeds the range of δ(60)Ni and δ(65)Cu values determined in the smelter, i.e. in feeding material and slag (δ(60)Ni from 0.56 ± 0.06‰ to 1.00 ± 0.06‰ and δ(65)Cu from -1.67 ± 0.04‰ to -1.68 ± 0.15‰). The shift toward heavier Ni and Cu δ values was the most significant in organic rich topsoil samples in the case of Ni (δ(60)Ni up to 1.71 ± 0.02‰) and in lichens and snow in the case of Cu (δ(65)Cu up to -0.06 ± 0.06‰ and -0.24 ± 0.04‰, respectively). These data suggest an important biological and biochemical fractionation (microorganisms and/or metal uptake by higher plants, organo-complexation etc.) of Ni and Cu isotopes, which should be quantified separately for each process and taken into account when using the stable isotopes for tracing contamination in the environment.
- 650 _2
- $a chemická frakcionace $7 D005591
- 650 _2
- $a měď $x analýza $7 D003300
- 650 _2
- $a monitorování životního prostředí $x metody $7 D004784
- 650 _2
- $a znečištění životního prostředí $x statistika a číselné údaje $7 D004787
- 650 _2
- $a izotopy $x analýza $7 D007554
- 650 _2
- $a kovy $7 D008670
- 650 _2
- $a nikl $x analýza $7 D009532
- 650 _2
- $a Norsko $7 D009664
- 650 _2
- $a sníh $7 D012914
- 650 _2
- $a půda $7 D012987
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Chrastný, Vladislav $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic.
- 700 1_
- $a Vítková, Martina $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic.
- 700 1_
- $a Francová, Anna $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic.
- 700 1_
- $a Jehlička, Jan $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic.
- 700 1_
- $a Gutsch, Marissa R $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic.
- 700 1_
- $a Kocourková, Jana $u Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic.
- 700 1_
- $a Aspholm, Paul E $u NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, NO-1431 Ås, Norway. $7 gn_A_00009493
- 700 1_
- $a Nilsson, Lars O $u NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, NO-1431 Ås, Norway.
- 700 1_
- $a Berglen, Tore F $u Department Urban Environment and Industry, NILU-Norwegian Institute for Air Research, Kjeller, Norway.
- 700 1_
- $a Jensen, Henning K B $u Geological Survey of Norway (NGU), 7491 Trondheim, Norway.
- 700 1_
- $a Komárek, Michael $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic.
- 773 0_
- $w MED00001554 $t Environmental pollution (Barking, Essex 1987) $x 1873-6424 $g Roč. 228, č. - (2017), s. 149-157
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28528262 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20171030120636 $b ABA008
- 999 __
- $a ok $b bmc $g 1254391 $s 991825
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 228 $c - $d 149-157 $e 20170518 $i 1873-6424 $m Environmental pollution (1987) $n Environ. pollut. (1987) $x MED00001554
- LZP __
- $a Pubmed-20171025