• Je něco špatně v tomto záznamu ?

Stable isotope tracing of Ni and Cu pollution in North-East Norway: Potentials and drawbacks

H. Šillerová, V. Chrastný, M. Vítková, A. Francová, J. Jehlička, MR. Gutsch, J. Kocourková, PE. Aspholm, LO. Nilsson, TF. Berglen, HKB. Jensen, M. Komárek,

. 2017 ; 228 (-) : 149-157. [pub] 20170518

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17030798

The use of Ni and Cu isotopes for tracing contamination sources in the environment remains a challenging task due to the limited information about the influence of various biogeochemical processes influencing stable isotope fractionation. This work focuses on a relatively simple system in north-east Norway with two possible endmembers (smelter-bedrock) and various environmental samples (snow, soil, lichens, PM10). In general, the whole area is enriched in heavy Ni and Cu isotopes highlighting the impact of the smelting activity. However, the environmental samples exhibit a large range of δ(60)Ni (-0.01 ± 0.03‰ to 1.71 ± 0.02‰) and δ(65)Cu (-0.06 ± 0.06‰ to -3.94 ± 0.3‰) values which exceeds the range of δ(60)Ni and δ(65)Cu values determined in the smelter, i.e. in feeding material and slag (δ(60)Ni from 0.56 ± 0.06‰ to 1.00 ± 0.06‰ and δ(65)Cu from -1.67 ± 0.04‰ to -1.68 ± 0.15‰). The shift toward heavier Ni and Cu δ values was the most significant in organic rich topsoil samples in the case of Ni (δ(60)Ni up to 1.71 ± 0.02‰) and in lichens and snow in the case of Cu (δ(65)Cu up to -0.06 ± 0.06‰ and -0.24 ± 0.04‰, respectively). These data suggest an important biological and biochemical fractionation (microorganisms and/or metal uptake by higher plants, organo-complexation etc.) of Ni and Cu isotopes, which should be quantified separately for each process and taken into account when using the stable isotopes for tracing contamination in the environment.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17030798
003      
CZ-PrNML
005      
20171030120547.0
007      
ta
008      
171025s2017 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.envpol.2017.05.030 $2 doi
035    __
$a (PubMed)28528262
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Šillerová, Hana $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic. Electronic address: sillerovah@fzp.czu.cz.
245    10
$a Stable isotope tracing of Ni and Cu pollution in North-East Norway: Potentials and drawbacks / $c H. Šillerová, V. Chrastný, M. Vítková, A. Francová, J. Jehlička, MR. Gutsch, J. Kocourková, PE. Aspholm, LO. Nilsson, TF. Berglen, HKB. Jensen, M. Komárek,
520    9_
$a The use of Ni and Cu isotopes for tracing contamination sources in the environment remains a challenging task due to the limited information about the influence of various biogeochemical processes influencing stable isotope fractionation. This work focuses on a relatively simple system in north-east Norway with two possible endmembers (smelter-bedrock) and various environmental samples (snow, soil, lichens, PM10). In general, the whole area is enriched in heavy Ni and Cu isotopes highlighting the impact of the smelting activity. However, the environmental samples exhibit a large range of δ(60)Ni (-0.01 ± 0.03‰ to 1.71 ± 0.02‰) and δ(65)Cu (-0.06 ± 0.06‰ to -3.94 ± 0.3‰) values which exceeds the range of δ(60)Ni and δ(65)Cu values determined in the smelter, i.e. in feeding material and slag (δ(60)Ni from 0.56 ± 0.06‰ to 1.00 ± 0.06‰ and δ(65)Cu from -1.67 ± 0.04‰ to -1.68 ± 0.15‰). The shift toward heavier Ni and Cu δ values was the most significant in organic rich topsoil samples in the case of Ni (δ(60)Ni up to 1.71 ± 0.02‰) and in lichens and snow in the case of Cu (δ(65)Cu up to -0.06 ± 0.06‰ and -0.24 ± 0.04‰, respectively). These data suggest an important biological and biochemical fractionation (microorganisms and/or metal uptake by higher plants, organo-complexation etc.) of Ni and Cu isotopes, which should be quantified separately for each process and taken into account when using the stable isotopes for tracing contamination in the environment.
650    _2
$a chemická frakcionace $7 D005591
650    _2
$a měď $x analýza $7 D003300
650    _2
$a monitorování životního prostředí $x metody $7 D004784
650    _2
$a znečištění životního prostředí $x statistika a číselné údaje $7 D004787
650    _2
$a izotopy $x analýza $7 D007554
650    _2
$a kovy $7 D008670
650    _2
$a nikl $x analýza $7 D009532
650    _2
$a Norsko $7 D009664
650    _2
$a sníh $7 D012914
650    _2
$a půda $7 D012987
655    _2
$a časopisecké články $7 D016428
700    1_
$a Chrastný, Vladislav $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic.
700    1_
$a Vítková, Martina $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic.
700    1_
$a Francová, Anna $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic.
700    1_
$a Jehlička, Jan $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic.
700    1_
$a Gutsch, Marissa R $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic.
700    1_
$a Kocourková, Jana $u Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic.
700    1_
$a Aspholm, Paul E $u NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, NO-1431 Ås, Norway. $7 gn_A_00009493
700    1_
$a Nilsson, Lars O $u NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, NO-1431 Ås, Norway.
700    1_
$a Berglen, Tore F $u Department Urban Environment and Industry, NILU-Norwegian Institute for Air Research, Kjeller, Norway.
700    1_
$a Jensen, Henning K B $u Geological Survey of Norway (NGU), 7491 Trondheim, Norway.
700    1_
$a Komárek, Michael $u Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic.
773    0_
$w MED00001554 $t Environmental pollution (Barking, Essex 1987) $x 1873-6424 $g Roč. 228, č. - (2017), s. 149-157
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28528262 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20171030120636 $b ABA008
999    __
$a ok $b bmc $g 1254391 $s 991825
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 228 $c - $d 149-157 $e 20170518 $i 1873-6424 $m Environmental pollution (1987) $n Environ. pollut. (1987) $x MED00001554
LZP    __
$a Pubmed-20171025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...