Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Joint analysis of histopathology image features and gene expression in breast cancer

V. Popovici, E. Budinská, L. Čápková, D. Schwarz, L. Dušek, J. Feit, R. Jaggi,

. 2016 ; 17 (1) : 209. [pub] 20160511

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17031745

Grantová podpora
NT14134 MZ0 CEP - Centrální evidence projektů

BACKGROUND: Genomics and proteomics are nowadays the dominant techniques for novel biomarker discovery. However, histopathology images contain a wealth of information related to the tumor histology, morphology and tumor-host interactions that is not accessible through these techniques. Thus, integrating the histopathology images in the biomarker discovery workflow could potentially lead to the identification of new image-based biomarkers and the refinement or even replacement of the existing genomic and proteomic signatures. However, extracting meaningful and robust image features to be mined jointly with genomic (and clinical, etc.) data represents a real challenge due to the complexity of the images. RESULTS: We developed a framework for integrating the histopathology images in the biomarker discovery workflow based on the bag-of-features approach - a method that has the advantage of being assumption-free and data-driven. The images were reduced to a set of salient patterns and additional measurements of their spatial distribution, with the resulting features being directly used in a standard biomarker discovery application. We demonstrated this framework in a search for prognostic biomarkers in breast cancer which resulted in the identification of several prognostic image features and a promising multimodal (imaging and genomic) prognostic signature. The source code for the image analysis procedures is freely available. CONCLUSIONS: The framework proposed allows for a joint analysis of images and gene expression data. Its application to a set of breast cancer cases resulted in image-based and combined (image and genomic) prognostic scores for relapse-free survival.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17031745
003      
CZ-PrNML
005      
20191024090627.0
007      
ta
008      
171025s2016 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12859-016-1072-z $2 doi
035    __
$a (PubMed)27170365
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Popovici, Vlad $u Institute of Biostatistics and Analyses, Faculty of Medicine, Masarykova Univerzita, Kamenice 5, Brno, 62500, Czech Republic. popovici@iba.muni.cz. $7 xx0213329
245    10
$a Joint analysis of histopathology image features and gene expression in breast cancer / $c V. Popovici, E. Budinská, L. Čápková, D. Schwarz, L. Dušek, J. Feit, R. Jaggi,
520    9_
$a BACKGROUND: Genomics and proteomics are nowadays the dominant techniques for novel biomarker discovery. However, histopathology images contain a wealth of information related to the tumor histology, morphology and tumor-host interactions that is not accessible through these techniques. Thus, integrating the histopathology images in the biomarker discovery workflow could potentially lead to the identification of new image-based biomarkers and the refinement or even replacement of the existing genomic and proteomic signatures. However, extracting meaningful and robust image features to be mined jointly with genomic (and clinical, etc.) data represents a real challenge due to the complexity of the images. RESULTS: We developed a framework for integrating the histopathology images in the biomarker discovery workflow based on the bag-of-features approach - a method that has the advantage of being assumption-free and data-driven. The images were reduced to a set of salient patterns and additional measurements of their spatial distribution, with the resulting features being directly used in a standard biomarker discovery application. We demonstrated this framework in a search for prognostic biomarkers in breast cancer which resulted in the identification of several prognostic image features and a promising multimodal (imaging and genomic) prognostic signature. The source code for the image analysis procedures is freely available. CONCLUSIONS: The framework proposed allows for a joint analysis of images and gene expression data. Its application to a set of breast cancer cases resulted in image-based and combined (image and genomic) prognostic scores for relapse-free survival.
650    _2
$a nádory prsu $x genetika $x patologie $7 D001943
650    _2
$a shluková analýza $7 D016000
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a stanovení celkové genové exprese $7 D020869
650    12
$a regulace genové exprese u nádorů $7 D015972
650    _2
$a genomika $x metody $7 D023281
650    _2
$a lidé $7 D006801
650    12
$a počítačové zpracování obrazu $7 D007091
650    _2
$a Kaplanův-Meierův odhad $7 D053208
655    _2
$a časopisecké články $7 D016428
700    1_
$a Budinská, Eva $u Institute of Biostatistics and Analyses, Faculty of Medicine, Masarykova Univerzita, Kamenice 5, Brno, 62500, Czech Republic. RECETOX, Masarykova Univerzita, Kamenice 5, Brno, 62500, Czech Republic. $7 xx0142844
700    1_
$a Čápková, Lenka $u Institute of Biostatistics and Analyses, Faculty of Medicine, Masarykova Univerzita, Kamenice 5, Brno, 62500, Czech Republic.
700    1_
$a Schwarz, Daniel, $u Institute of Biostatistics and Analyses, Faculty of Medicine, Masarykova Univerzita, Kamenice 5, Brno, 62500, Czech Republic. $d 1977- $7 ola2002146812
700    1_
$a Dušek, Ladislav, $u Institute of Biostatistics and Analyses, Faculty of Medicine, Masarykova Univerzita, Kamenice 5, Brno, 62500, Czech Republic. $d 1967- $7 mzk2003181727
700    1_
$a Feit, Josef $u Institute of Biostatistics and Analyses, Faculty of Medicine, Masarykova Univerzita, Kamenice 5, Brno, 62500, Czech Republic.
700    1_
$a Jaggi, Rolf $u Department of Clinical Research, Faculty of Medicine, University of Bern, Bern, Switzerland.
773    0_
$w MED00008167 $t BMC bioinformatics $x 1471-2105 $g Roč. 17, č. 1 (2016), s. 209
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27170365 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20191024091102 $b ABA008
999    __
$a ok $b bmc $g 1255338 $s 992772
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 17 $c 1 $d 209 $e 20160511 $i 1471-2105 $m BMC bioinformatics $n BMC Bioinformatics $x MED00008167
GRA    __
$a NT14134 $p MZ0
LZP    __
$a Pubmed-20171025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...