-
Je něco špatně v tomto záznamu ?
A flexible AFT model for misclassified clustered interval-censored data
MJ. García-Zattera, A. Jara, A. Komárek,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
PubMed
26444435
DOI
10.1111/biom.12424
Knihovny.cz E-zdroje
- MeSH
- Bayesova věta MeSH
- časové faktory MeSH
- dítě MeSH
- lidé MeSH
- longitudinální studie * MeSH
- orální zdraví statistika a číselné údaje MeSH
- počítačová simulace MeSH
- shluková analýza * MeSH
- statistické modely * MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Motivated by a longitudinal oral health study, we propose a flexible modeling approach for clustered time-to-event data, when the response of interest can only be determined to lie in an interval obtained from a sequence of examination times (interval-censored data) and on top of that, the determination of the occurrence of the event is subject to misclassification. The clustered time-to-event data are modeled using an accelerated failure time model with random effects and by assuming a penalized Gaussian mixture model for the random effects terms to avoid restrictive distributional assumptions concerning the event times. A general misclassification model is discussed in detail, considering the possibility that different examiners were involved in the assessment of the occurrence of the events for a given subject across time. A Bayesian implementation of the proposed model is described in a detailed manner. We additionally provide empirical evidence showing that the model can be used to estimate the underlying time-to-event distribution and the misclassification parameters without any external information about the latter parameters. We also provide results of a simulation study to evaluate the effect of neglecting the presence of misclassification in the analysis of clustered time-to-event data.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17031892
- 003
- CZ-PrNML
- 005
- 20171101100306.0
- 007
- ta
- 008
- 171025s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/biom.12424 $2 doi
- 035 __
- $a (PubMed)26444435
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a García-Zattera, María José $u Department of Statistics, Faculty of Mathematics, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile.
- 245 12
- $a A flexible AFT model for misclassified clustered interval-censored data / $c MJ. García-Zattera, A. Jara, A. Komárek,
- 520 9_
- $a Motivated by a longitudinal oral health study, we propose a flexible modeling approach for clustered time-to-event data, when the response of interest can only be determined to lie in an interval obtained from a sequence of examination times (interval-censored data) and on top of that, the determination of the occurrence of the event is subject to misclassification. The clustered time-to-event data are modeled using an accelerated failure time model with random effects and by assuming a penalized Gaussian mixture model for the random effects terms to avoid restrictive distributional assumptions concerning the event times. A general misclassification model is discussed in detail, considering the possibility that different examiners were involved in the assessment of the occurrence of the events for a given subject across time. A Bayesian implementation of the proposed model is described in a detailed manner. We additionally provide empirical evidence showing that the model can be used to estimate the underlying time-to-event distribution and the misclassification parameters without any external information about the latter parameters. We also provide results of a simulation study to evaluate the effect of neglecting the presence of misclassification in the analysis of clustered time-to-event data.
- 650 _2
- $a Bayesova věta $7 D001499
- 650 _2
- $a dítě $7 D002648
- 650 12
- $a shluková analýza $7 D016000
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a longitudinální studie $7 D008137
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 12
- $a statistické modely $7 D015233
- 650 _2
- $a orální zdraví $x statistika a číselné údaje $7 D009909
- 650 _2
- $a časové faktory $7 D013997
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Jara, Alejandro $u Department of Statistics, Faculty of Mathematics, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile.
- 700 1_
- $a Komárek, Arnošt $u Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University in Prague, Sokolovska 83, CZ-186 75 Praha 8 ' Karlín, Czech Republic.
- 773 0_
- $w MED00000765 $t Biometrics $x 1541-0420 $g Roč. 72, č. 2 (2016), s. 473-83
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26444435 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20171101100357 $b ABA008
- 999 __
- $a ok $b bmc $g 1255485 $s 992919
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 72 $c 2 $d 473-83 $e 20151007 $i 1541-0420 $m Biometrics $n Biometrics $x MED00000765
- LZP __
- $a Pubmed-20171025