Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

A flexible AFT model for misclassified clustered interval-censored data

MJ. García-Zattera, A. Jara, A. Komárek,

. 2016 ; 72 (2) : 473-83. [pub] 20151007

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc17031892

Motivated by a longitudinal oral health study, we propose a flexible modeling approach for clustered time-to-event data, when the response of interest can only be determined to lie in an interval obtained from a sequence of examination times (interval-censored data) and on top of that, the determination of the occurrence of the event is subject to misclassification. The clustered time-to-event data are modeled using an accelerated failure time model with random effects and by assuming a penalized Gaussian mixture model for the random effects terms to avoid restrictive distributional assumptions concerning the event times. A general misclassification model is discussed in detail, considering the possibility that different examiners were involved in the assessment of the occurrence of the events for a given subject across time. A Bayesian implementation of the proposed model is described in a detailed manner. We additionally provide empirical evidence showing that the model can be used to estimate the underlying time-to-event distribution and the misclassification parameters without any external information about the latter parameters. We also provide results of a simulation study to evaluate the effect of neglecting the presence of misclassification in the analysis of clustered time-to-event data.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17031892
003      
CZ-PrNML
005      
20171101100306.0
007      
ta
008      
171025s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1111/biom.12424 $2 doi
035    __
$a (PubMed)26444435
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a García-Zattera, María José $u Department of Statistics, Faculty of Mathematics, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile.
245    12
$a A flexible AFT model for misclassified clustered interval-censored data / $c MJ. García-Zattera, A. Jara, A. Komárek,
520    9_
$a Motivated by a longitudinal oral health study, we propose a flexible modeling approach for clustered time-to-event data, when the response of interest can only be determined to lie in an interval obtained from a sequence of examination times (interval-censored data) and on top of that, the determination of the occurrence of the event is subject to misclassification. The clustered time-to-event data are modeled using an accelerated failure time model with random effects and by assuming a penalized Gaussian mixture model for the random effects terms to avoid restrictive distributional assumptions concerning the event times. A general misclassification model is discussed in detail, considering the possibility that different examiners were involved in the assessment of the occurrence of the events for a given subject across time. A Bayesian implementation of the proposed model is described in a detailed manner. We additionally provide empirical evidence showing that the model can be used to estimate the underlying time-to-event distribution and the misclassification parameters without any external information about the latter parameters. We also provide results of a simulation study to evaluate the effect of neglecting the presence of misclassification in the analysis of clustered time-to-event data.
650    _2
$a Bayesova věta $7 D001499
650    _2
$a dítě $7 D002648
650    12
$a shluková analýza $7 D016000
650    _2
$a počítačová simulace $7 D003198
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    12
$a longitudinální studie $7 D008137
650    _2
$a mužské pohlaví $7 D008297
650    12
$a statistické modely $7 D015233
650    _2
$a orální zdraví $x statistika a číselné údaje $7 D009909
650    _2
$a časové faktory $7 D013997
655    _2
$a časopisecké články $7 D016428
700    1_
$a Jara, Alejandro $u Department of Statistics, Faculty of Mathematics, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile.
700    1_
$a Komárek, Arnošt $u Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University in Prague, Sokolovska 83, CZ-186 75 Praha 8 ' Karlín, Czech Republic.
773    0_
$w MED00000765 $t Biometrics $x 1541-0420 $g Roč. 72, č. 2 (2016), s. 473-83
856    41
$u https://pubmed.ncbi.nlm.nih.gov/26444435 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20171101100357 $b ABA008
999    __
$a ok $b bmc $g 1255485 $s 992919
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 72 $c 2 $d 473-83 $e 20151007 $i 1541-0420 $m Biometrics $n Biometrics $x MED00000765
LZP    __
$a Pubmed-20171025

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...