-
Something wrong with this record ?
A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History
N. Hohmann, EM. Wolf, MA. Lysak, MA. Koch,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 1989 to 1 year ago
Freely Accessible Science Journals
from 1989 to 12 months ago
Open Access Digital Library
from 1989-01-01
PubMed
26410304
DOI
10.1105/tpc.15.00482
Knihovny.cz E-resources
- MeSH
- Arabidopsis genetics physiology MeSH
- Brassica genetics physiology MeSH
- Brassicaceae genetics physiology MeSH
- Phylogeny MeSH
- Genome, Chloroplast genetics MeSH
- Genome, Plant genetics MeSH
- Evolution, Molecular * MeSH
- Polyploidy MeSH
- Sequence Analysis, DNA MeSH
- Genetic Speciation MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The Brassicaceae include several major crop plants and numerous important model species in comparative evolutionary research such as Arabidopsis, Brassica, Boechera, Thellungiella, and Arabis species. As any evolutionary hypothesis needs to be placed in a temporal context, reliably dated major splits within the evolution of Brassicaceae are essential. We present a comprehensive time-calibrated framework with important divergence time estimates based on whole-chloroplast sequence data for 29 Brassicaceae species. Diversification of the Brassicaceae crown group started at the Eocene-to-Oligocene transition. Subsequent major evolutionary splits are dated to ∼20 million years ago, coinciding with the Oligocene-to-Miocene transition, with increasing drought and aridity and transient glaciation events. The age of the Arabidopsis thaliana crown group is 6 million years ago, at the Miocene and Pliocene border. The overall species richness of the family is well explained by high levels of neopolyploidy (43% in total), but this trend is neither directly associated with an increase in genome size nor is there a general lineage-specific constraint. Our results highlight polyploidization as an important source for generating new evolutionary lineages adapted to changing environments. We conclude that species radiation, paralleled by high levels of neopolyploidization, follows genome size decrease, stabilization, and genetic diploidization.
Central European Institute of Technology Masaryk University Brno 625 00 Czech Republic
Centre for Organismal Studies Heidelberg Heidelberg University 69120 Heidelberg Germany
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17031897
- 003
- CZ-PrNML
- 005
- 20171027103857.0
- 007
- ta
- 008
- 171025s2015 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1105/tpc.15.00482 $2 doi
- 035 __
- $a (PubMed)26410304
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Hohmann, Nora $u Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany.
- 245 12
- $a A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History / $c N. Hohmann, EM. Wolf, MA. Lysak, MA. Koch,
- 520 9_
- $a The Brassicaceae include several major crop plants and numerous important model species in comparative evolutionary research such as Arabidopsis, Brassica, Boechera, Thellungiella, and Arabis species. As any evolutionary hypothesis needs to be placed in a temporal context, reliably dated major splits within the evolution of Brassicaceae are essential. We present a comprehensive time-calibrated framework with important divergence time estimates based on whole-chloroplast sequence data for 29 Brassicaceae species. Diversification of the Brassicaceae crown group started at the Eocene-to-Oligocene transition. Subsequent major evolutionary splits are dated to ∼20 million years ago, coinciding with the Oligocene-to-Miocene transition, with increasing drought and aridity and transient glaciation events. The age of the Arabidopsis thaliana crown group is 6 million years ago, at the Miocene and Pliocene border. The overall species richness of the family is well explained by high levels of neopolyploidy (43% in total), but this trend is neither directly associated with an increase in genome size nor is there a general lineage-specific constraint. Our results highlight polyploidization as an important source for generating new evolutionary lineages adapted to changing environments. We conclude that species radiation, paralleled by high levels of neopolyploidization, follows genome size decrease, stabilization, and genetic diploidization.
- 650 _2
- $a Arabidopsis $x genetika $x fyziologie $7 D017360
- 650 _2
- $a Brassica $x genetika $x fyziologie $7 D001937
- 650 _2
- $a Brassicaceae $x genetika $x fyziologie $7 D019607
- 650 12
- $a molekulární evoluce $7 D019143
- 650 _2
- $a vznik druhů (genetika) $7 D049810
- 650 _2
- $a genom chloroplastový $x genetika $7 D054628
- 650 _2
- $a genom rostlinný $x genetika $7 D018745
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a polyploidie $7 D011123
- 650 _2
- $a sekvenční analýza DNA $7 D017422
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Wolf, Eva M $u Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany.
- 700 1_
- $a Lysak, Martin A $u Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic.
- 700 1_
- $a Koch, Marcus A $u Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany marcus.koch@cos.uni-heidelberg.de.
- 773 0_
- $w MED00005315 $t The Plant cell $x 1532-298X $g Roč. 27, č. 10 (2015), s. 2770-84
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26410304 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20171025 $b ABA008
- 991 __
- $a 20171027103942 $b ABA008
- 999 __
- $a ok $b bmc $g 1255490 $s 992924
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 27 $c 10 $d 2770-84 $e 20150926 $i 1532-298X $m The Plant cell $n Plant Cell $x MED00005315
- LZP __
- $a Pubmed-20171025