• Je něco špatně v tomto záznamu ?

Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage

M. Kaucka, T. Zikmund, M. Tesarova, D. Gyllborg, A. Hellander, J. Jaros, J. Kaiser, J. Petersen, B. Szarowska, PT. Newton, V. Dyachuk, L. Li, H. Qian, AS. Johansson, Y. Mishina, JD. Currie, EM. Tanaka, A. Erickson, A. Dudley, H. Brismar, P....

. 2017 ; 6 (-) : . [pub] 20170417

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18010671

Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale.

Center for Brain Research Medical University Vienna Vienna Austria

Center for Regenerative Therapies Technische Universität Dresden Dresden Germany

Central European Institute of Technology Brno University of Technology Brno Czech Republic

Department of Biologic and Materials Sciences University of Michigan School of Dentistry Ann Arbor United States

Department of Genetics Cell Biology and Anatomy University of Nebraska Medical Center Omaha United States

Department of Histology and Embryology Medical Faculty Masaryk University Brno Czech Republic

Department of Information Technology Uppsala University Uppsala Sweden

Department of Medicine Karolinska Institutet Stockholm Sweden

Department of Neuroscience Karolinska Institutet Stockholm Sweden

Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden

Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden Center for Brain Research Medical University Vienna Vienna Austria

Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden Institute for Regenerative Medicine Sechenov 1st Moscow State Medical University Moscow Russia

John Innes Centre Norwich United Kingdom

National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health Bethesda United States

Science for Life Laboratory Royal Institute of Technology Solna Sweden

Unit of Molecular Neurobiology Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18010671
003      
CZ-PrNML
005      
20180404142202.0
007      
ta
008      
180404s2017 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.7554/eLife.25902 $2 doi
035    __
$a (PubMed)28414273
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Kaucka, Marketa $u Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. Center for Brain Research, Medical University Vienna, Vienna, Austria.
245    10
$a Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage / $c M. Kaucka, T. Zikmund, M. Tesarova, D. Gyllborg, A. Hellander, J. Jaros, J. Kaiser, J. Petersen, B. Szarowska, PT. Newton, V. Dyachuk, L. Li, H. Qian, AS. Johansson, Y. Mishina, JD. Currie, EM. Tanaka, A. Erickson, A. Dudley, H. Brismar, P. Southam, E. Coen, M. Chen, LS. Weinstein, A. Hampl, E. Arenas, AS. Chagin, K. Fried, I. Adameyko,
520    9_
$a Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale.
650    _2
$a zvířata $7 D000818
650    _2
$a chrupavka $x embryologie $7 D002356
650    _2
$a počítačová simulace $7 D003198
650    _2
$a myši $7 D051379
650    _2
$a biologické modely $7 D008954
650    _2
$a obratlovci $x embryologie $7 D014714
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Zikmund, Tomas $u Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Tesarova, Marketa $u Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Gyllborg, Daniel $u Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Hellander, Andreas $u Department of Information Technology, Uppsala University, Uppsala, Sweden.
700    1_
$a Jaros, Josef $u Department of Histology and Embryology, Medical Faculty, Masaryk University, Brno, Czech Republic.
700    1_
$a Kaiser, Jozef $u Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Petersen, Julian $u Center for Brain Research, Medical University Vienna, Vienna, Austria.
700    1_
$a Szarowska, Bara $u Center for Brain Research, Medical University Vienna, Vienna, Austria.
700    1_
$a Newton, Phillip T $u Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Dyachuk, Vyacheslav $u Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Li, Lei $u Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Qian, Hong $u Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Johansson, Anne-Sofie $u Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Mishina, Yuji $u Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, United States.
700    1_
$a Currie, Joshua D $u Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany.
700    1_
$a Tanaka, Elly M $u Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany.
700    1_
$a Erickson, Alek $u Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States.
700    1_
$a Dudley, Andrew $u Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States.
700    1_
$a Brismar, Hjalmar $u Science for Life Laboratory, Royal Institute of Technology, Solna, Sweden.
700    1_
$a Southam, Paul $u John Innes Centre, Norwich, United Kingdom.
700    1_
$a Coen, Enrico $u John Innes Centre, Norwich, United Kingdom.
700    1_
$a Chen, Min $u National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States.
700    1_
$a Weinstein, Lee S $u National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States.
700    1_
$a Hampl, Ales $u Department of Histology and Embryology, Medical Faculty, Masaryk University, Brno, Czech Republic.
700    1_
$a Arenas, Ernest $u Unit of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Chagin, Andrei S $u Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.
700    1_
$a Fried, Kaj $u Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
700    1_
$a Adameyko, Igor $u Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden. Center for Brain Research, Medical University Vienna, Vienna, Austria.
773    0_
$w MED00188753 $t eLife $x 2050-084X $g Roč. 6, č. - (2017)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28414273 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180404 $b ABA008
991    __
$a 20180404142241 $b ABA008
999    __
$a ok $b bmc $g 1288156 $s 1007483
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 6 $c - $e 20170417 $i 2050-084X $m eLife $n eLife $x MED00188753
LZP    __
$a Pubmed-20180404

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...