-
Je něco špatně v tomto záznamu ?
Na+/K+-ATPase interaction with methylglyoxal as reactive metabolic side product
M. Svrckova, M. Zatloukalova, P. Dvorakova, D. Coufalova, D. Novak, L. Hernychova, J. Vacek,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
- MeSH
- guanidiny farmakologie MeSH
- hmotnostní spektrometrie MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- ledviny metabolismus MeSH
- ouabain farmakologie MeSH
- oxidační stres MeSH
- produkty pokročilé glykace chemie metabolismus MeSH
- pyruvaldehyd chemie metabolismus MeSH
- sérový albumin hovězí metabolismus MeSH
- skot MeSH
- sodíko-draslíková ATPasa antagonisté a inhibitory chemie metabolismus MeSH
- Sus scrofa MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Proteins are subject to oxidative modification and the formation of adducts with a broad spectrum of reactive species via enzymatic and non-enzymatic mechanisms. Here we report that in vitro non-enzymatic methylglyoxal (MGO) binding causes the inhibition and formation of MGO advanced glycation end-products (MAGEs) in Na+/K+-ATPase (NKA). Concretely, MGO adducts with NKA amino acid residues (mainly Arg) and Nε-(carboxymethyl)lysine (CML) formation were found. MGO is not only an inhibitor for solubilized NKA (IC50=91±16μM), but also for reconstituted NKA in the lipid bilayer environment, which was clearly demonstrated using a DPPC/DPPE liposome model in the presence or absence of the NKA-selective inhibitor ouabain. High-resolution mass spectrometric analysis of a tryptic digest of NKA isolated from pig (Sus scrofa) kidney indicates that the intracellular α-subunit is naturally (post-translationally) modified by MGO in vivo. In contrast to this, the β-subunit could only be modified by MGO artificially, and the transmembrane part of the protein did not undergo MGO binding under the experimental setup used. As with bovine serum albumin, serving as the water-soluble model, we also demonstrated a high binding capacity of MGO to water-poorly soluble NKA using a multi-spectral methodology based on electroanalytical, immunochemical and fluorimetric tools. In addition, a partial suppression of the MGO-mediated inhibitory effect could be observed in the presence of aminoguanidine (pimagedine), a glycation suppressor and MGO-scavenger. All the results here were obtained with the X-ray structure of NKA in the E1 conformation (3WGV) and could be used in the further interpretation of the functionality of this key enzyme in the presence of highly-reactive metabolic side-products, glycation agents and generally under oxidative stress conditions.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18010722
- 003
- CZ-PrNML
- 005
- 20180420101820.0
- 007
- ta
- 008
- 180404s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.freeradbiomed.2017.03.024 $2 doi
- 035 __
- $a (PubMed)28342847
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Svrckova, Marika $u Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic. Electronic address: svrckova.marika@gmail.com.
- 245 10
- $a Na+/K+-ATPase interaction with methylglyoxal as reactive metabolic side product / $c M. Svrckova, M. Zatloukalova, P. Dvorakova, D. Coufalova, D. Novak, L. Hernychova, J. Vacek,
- 520 9_
- $a Proteins are subject to oxidative modification and the formation of adducts with a broad spectrum of reactive species via enzymatic and non-enzymatic mechanisms. Here we report that in vitro non-enzymatic methylglyoxal (MGO) binding causes the inhibition and formation of MGO advanced glycation end-products (MAGEs) in Na+/K+-ATPase (NKA). Concretely, MGO adducts with NKA amino acid residues (mainly Arg) and Nε-(carboxymethyl)lysine (CML) formation were found. MGO is not only an inhibitor for solubilized NKA (IC50=91±16μM), but also for reconstituted NKA in the lipid bilayer environment, which was clearly demonstrated using a DPPC/DPPE liposome model in the presence or absence of the NKA-selective inhibitor ouabain. High-resolution mass spectrometric analysis of a tryptic digest of NKA isolated from pig (Sus scrofa) kidney indicates that the intracellular α-subunit is naturally (post-translationally) modified by MGO in vivo. In contrast to this, the β-subunit could only be modified by MGO artificially, and the transmembrane part of the protein did not undergo MGO binding under the experimental setup used. As with bovine serum albumin, serving as the water-soluble model, we also demonstrated a high binding capacity of MGO to water-poorly soluble NKA using a multi-spectral methodology based on electroanalytical, immunochemical and fluorimetric tools. In addition, a partial suppression of the MGO-mediated inhibitory effect could be observed in the presence of aminoguanidine (pimagedine), a glycation suppressor and MGO-scavenger. All the results here were obtained with the X-ray structure of NKA in the E1 conformation (3WGV) and could be used in the further interpretation of the functionality of this key enzyme in the presence of highly-reactive metabolic side-products, glycation agents and generally under oxidative stress conditions.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a skot $7 D002417
- 650 _2
- $a krystalografie rentgenová $7 D018360
- 650 _2
- $a produkty pokročilé glykace $x chemie $x metabolismus $7 D017127
- 650 _2
- $a guanidiny $x farmakologie $7 D006146
- 650 _2
- $a ledviny $x metabolismus $7 D007668
- 650 _2
- $a hmotnostní spektrometrie $7 D013058
- 650 _2
- $a ouabain $x farmakologie $7 D010042
- 650 _2
- $a oxidační stres $7 D018384
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a konformace proteinů $7 D011487
- 650 _2
- $a pyruvaldehyd $x chemie $x metabolismus $7 D011765
- 650 _2
- $a sérový albumin hovězí $x metabolismus $7 D012710
- 650 _2
- $a sodíko-draslíková ATPasa $x antagonisté a inhibitory $x chemie $x metabolismus $7 D000254
- 650 _2
- $a Sus scrofa $7 D034421
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Zatloukalova, Martina $u Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic.
- 700 1_
- $a Dvorakova, Petra $u Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
- 700 1_
- $a Coufalova, Dominika $u Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
- 700 1_
- $a Novak, David $u Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic.
- 700 1_
- $a Hernychova, Lenka $u Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
- 700 1_
- $a Vacek, Jan $u Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic. Electronic address: jan.vacek@upol.cz.
- 773 0_
- $w MED00001857 $t Free radical biology & medicine $x 1873-4596 $g Roč. 108, č. - (2017), s. 146-154
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28342847 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180404 $b ABA008
- 991 __
- $a 20180420101922 $b ABA008
- 999 __
- $a ok $b bmc $g 1288207 $s 1007534
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 108 $c - $d 146-154 $e 20170322 $i 1873-4596 $m Free radical biology & medicine $n Free Radic Biol Med $x MED00001857
- LZP __
- $a Pubmed-20180404