• Je něco špatně v tomto záznamu ?

Na+/K+-ATPase interaction with methylglyoxal as reactive metabolic side product

M. Svrckova, M. Zatloukalova, P. Dvorakova, D. Coufalova, D. Novak, L. Hernychova, J. Vacek,

. 2017 ; 108 (-) : 146-154. [pub] 20170322

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18010722

Proteins are subject to oxidative modification and the formation of adducts with a broad spectrum of reactive species via enzymatic and non-enzymatic mechanisms. Here we report that in vitro non-enzymatic methylglyoxal (MGO) binding causes the inhibition and formation of MGO advanced glycation end-products (MAGEs) in Na+/K+-ATPase (NKA). Concretely, MGO adducts with NKA amino acid residues (mainly Arg) and Nε-(carboxymethyl)lysine (CML) formation were found. MGO is not only an inhibitor for solubilized NKA (IC50=91±16μM), but also for reconstituted NKA in the lipid bilayer environment, which was clearly demonstrated using a DPPC/DPPE liposome model in the presence or absence of the NKA-selective inhibitor ouabain. High-resolution mass spectrometric analysis of a tryptic digest of NKA isolated from pig (Sus scrofa) kidney indicates that the intracellular α-subunit is naturally (post-translationally) modified by MGO in vivo. In contrast to this, the β-subunit could only be modified by MGO artificially, and the transmembrane part of the protein did not undergo MGO binding under the experimental setup used. As with bovine serum albumin, serving as the water-soluble model, we also demonstrated a high binding capacity of MGO to water-poorly soluble NKA using a multi-spectral methodology based on electroanalytical, immunochemical and fluorimetric tools. In addition, a partial suppression of the MGO-mediated inhibitory effect could be observed in the presence of aminoguanidine (pimagedine), a glycation suppressor and MGO-scavenger. All the results here were obtained with the X-ray structure of NKA in the E1 conformation (3WGV) and could be used in the further interpretation of the functionality of this key enzyme in the presence of highly-reactive metabolic side-products, glycation agents and generally under oxidative stress conditions.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18010722
003      
CZ-PrNML
005      
20180420101820.0
007      
ta
008      
180404s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.freeradbiomed.2017.03.024 $2 doi
035    __
$a (PubMed)28342847
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Svrckova, Marika $u Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic. Electronic address: svrckova.marika@gmail.com.
245    10
$a Na+/K+-ATPase interaction with methylglyoxal as reactive metabolic side product / $c M. Svrckova, M. Zatloukalova, P. Dvorakova, D. Coufalova, D. Novak, L. Hernychova, J. Vacek,
520    9_
$a Proteins are subject to oxidative modification and the formation of adducts with a broad spectrum of reactive species via enzymatic and non-enzymatic mechanisms. Here we report that in vitro non-enzymatic methylglyoxal (MGO) binding causes the inhibition and formation of MGO advanced glycation end-products (MAGEs) in Na+/K+-ATPase (NKA). Concretely, MGO adducts with NKA amino acid residues (mainly Arg) and Nε-(carboxymethyl)lysine (CML) formation were found. MGO is not only an inhibitor for solubilized NKA (IC50=91±16μM), but also for reconstituted NKA in the lipid bilayer environment, which was clearly demonstrated using a DPPC/DPPE liposome model in the presence or absence of the NKA-selective inhibitor ouabain. High-resolution mass spectrometric analysis of a tryptic digest of NKA isolated from pig (Sus scrofa) kidney indicates that the intracellular α-subunit is naturally (post-translationally) modified by MGO in vivo. In contrast to this, the β-subunit could only be modified by MGO artificially, and the transmembrane part of the protein did not undergo MGO binding under the experimental setup used. As with bovine serum albumin, serving as the water-soluble model, we also demonstrated a high binding capacity of MGO to water-poorly soluble NKA using a multi-spectral methodology based on electroanalytical, immunochemical and fluorimetric tools. In addition, a partial suppression of the MGO-mediated inhibitory effect could be observed in the presence of aminoguanidine (pimagedine), a glycation suppressor and MGO-scavenger. All the results here were obtained with the X-ray structure of NKA in the E1 conformation (3WGV) and could be used in the further interpretation of the functionality of this key enzyme in the presence of highly-reactive metabolic side-products, glycation agents and generally under oxidative stress conditions.
650    _2
$a zvířata $7 D000818
650    _2
$a skot $7 D002417
650    _2
$a krystalografie rentgenová $7 D018360
650    _2
$a produkty pokročilé glykace $x chemie $x metabolismus $7 D017127
650    _2
$a guanidiny $x farmakologie $7 D006146
650    _2
$a ledviny $x metabolismus $7 D007668
650    _2
$a hmotnostní spektrometrie $7 D013058
650    _2
$a ouabain $x farmakologie $7 D010042
650    _2
$a oxidační stres $7 D018384
650    _2
$a vazba proteinů $7 D011485
650    _2
$a konformace proteinů $7 D011487
650    _2
$a pyruvaldehyd $x chemie $x metabolismus $7 D011765
650    _2
$a sérový albumin hovězí $x metabolismus $7 D012710
650    _2
$a sodíko-draslíková ATPasa $x antagonisté a inhibitory $x chemie $x metabolismus $7 D000254
650    _2
$a Sus scrofa $7 D034421
655    _2
$a časopisecké články $7 D016428
700    1_
$a Zatloukalova, Martina $u Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic.
700    1_
$a Dvorakova, Petra $u Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
700    1_
$a Coufalova, Dominika $u Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
700    1_
$a Novak, David $u Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic.
700    1_
$a Hernychova, Lenka $u Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
700    1_
$a Vacek, Jan $u Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic. Electronic address: jan.vacek@upol.cz.
773    0_
$w MED00001857 $t Free radical biology & medicine $x 1873-4596 $g Roč. 108, č. - (2017), s. 146-154
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28342847 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180404 $b ABA008
991    __
$a 20180420101922 $b ABA008
999    __
$a ok $b bmc $g 1288207 $s 1007534
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 108 $c - $d 146-154 $e 20170322 $i 1873-4596 $m Free radical biology & medicine $n Free Radic Biol Med $x MED00001857
LZP    __
$a Pubmed-20180404

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...