• Je něco špatně v tomto záznamu ?

Characterization of Three Druggable Hot-Spots in the Aurora-A/TPX2 Interaction Using Biochemical, Biophysical, and Fragment-Based Approaches

PJ. McIntyre, PM. Collins, L. Vrzal, K. Birchall, LH. Arnold, C. Mpamhanga, PJ. Coombs, SG. Burgess, MW. Richards, A. Winter, V. Veverka, FV. Delft, A. Merritt, R. Bayliss,

. 2017 ; 12 (11) : 2906-2914. [pub] 20171030

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18016275

The mitotic kinase Aurora-A and its partner protein TPX2 (Targeting Protein for Xenopus kinesin-like protein 2) are overexpressed in cancers, and it has been proposed that they work together as an oncogenic holoenzyme. TPX2 is responsible for activating Aurora-A during mitosis, ensuring proper cell division. Disruption of the interface with TPX2 is therefore a potential target for novel anticancer drugs that exploit the increased sensitivity of cancer cells to mitotic stress. Here, we investigate the interface using coprecipitation assays and isothermal titration calorimetry to quantify the energetic contribution of individual residues of TPX2. Residues Tyr8, Tyr10, Phe16, and Trp34 of TPX2 are shown to be crucial for robust complex formation, suggesting that the interaction could be abrogated through blocking any of the three pockets on Aurora-A that complement these residues. Phosphorylation of Aurora-A on Thr288 is also necessary for high-affinity binding, and here we identify arginine residues that communicate the phosphorylation of Thr288 to the TPX2 binding site. With these findings in mind, we conducted a high-throughput X-ray crystallography-based screen of 1255 fragments against Aurora-A and identified 59 hits. Over three-quarters of these hits bound to the pockets described above, both validating our identification of hotspots and demonstrating the druggability of this protein-protein interaction. Our study exemplifies the potential of high-throughput crystallography facilities such as XChem to aid drug discovery. These results will accelerate the development of chemical inhibitors of the Aurora-A/TPX2 interaction.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18016275
003      
CZ-PrNML
005      
20180518130031.0
007      
ta
008      
180515s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1021/acschembio.7b00537 $2 doi
035    __
$a (PubMed)29045126
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a McIntyre, Patrick J $u Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester , Leicester, LE1 9HN, United Kingdom.
245    10
$a Characterization of Three Druggable Hot-Spots in the Aurora-A/TPX2 Interaction Using Biochemical, Biophysical, and Fragment-Based Approaches / $c PJ. McIntyre, PM. Collins, L. Vrzal, K. Birchall, LH. Arnold, C. Mpamhanga, PJ. Coombs, SG. Burgess, MW. Richards, A. Winter, V. Veverka, FV. Delft, A. Merritt, R. Bayliss,
520    9_
$a The mitotic kinase Aurora-A and its partner protein TPX2 (Targeting Protein for Xenopus kinesin-like protein 2) are overexpressed in cancers, and it has been proposed that they work together as an oncogenic holoenzyme. TPX2 is responsible for activating Aurora-A during mitosis, ensuring proper cell division. Disruption of the interface with TPX2 is therefore a potential target for novel anticancer drugs that exploit the increased sensitivity of cancer cells to mitotic stress. Here, we investigate the interface using coprecipitation assays and isothermal titration calorimetry to quantify the energetic contribution of individual residues of TPX2. Residues Tyr8, Tyr10, Phe16, and Trp34 of TPX2 are shown to be crucial for robust complex formation, suggesting that the interaction could be abrogated through blocking any of the three pockets on Aurora-A that complement these residues. Phosphorylation of Aurora-A on Thr288 is also necessary for high-affinity binding, and here we identify arginine residues that communicate the phosphorylation of Thr288 to the TPX2 binding site. With these findings in mind, we conducted a high-throughput X-ray crystallography-based screen of 1255 fragments against Aurora-A and identified 59 hits. Over three-quarters of these hits bound to the pockets described above, both validating our identification of hotspots and demonstrating the druggability of this protein-protein interaction. Our study exemplifies the potential of high-throughput crystallography facilities such as XChem to aid drug discovery. These results will accelerate the development of chemical inhibitors of the Aurora-A/TPX2 interaction.
650    _2
$a aurora kinasa A $x chemie $x metabolismus $7 D064096
650    _2
$a vazebná místa $x účinky léků $7 D001665
650    _2
$a proteiny buněčného cyklu $x chemie $x metabolismus $7 D018797
650    _2
$a krystalografie rentgenová $7 D018360
650    _2
$a objevování léků $7 D055808
650    _2
$a lidé $7 D006801
650    _2
$a ligandy $7 D008024
650    _2
$a proteiny asociované s mikrotubuly $x chemie $x metabolismus $7 D008869
650    _2
$a simulace molekulového dockingu $7 D062105
650    _2
$a jaderné proteiny $x chemie $x metabolismus $7 D009687
650    _2
$a vazba proteinů $x účinky léků $7 D011485
650    _2
$a mapy interakcí proteinů $x účinky léků $7 D060066
650    _2
$a thiazolidiny $x chemie $x farmakologie $7 D053778
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Collins, Patrick M $u Diamond Light Source, Harwell Science and Innovation Campus , Didcot, OX11 0DE, United Kingdom.
700    1_
$a Vrzal, Lukáš $u University of Chemistry and Technology , Technická 5, Prague 6 - Dejvice, Prague, 166 28, Czech Republic. Institute of Organic Chemistry and Biochemistry , Flemingovo nám. 542/2, Prague 6, Prague, 166 10, Czech Republic.
700    1_
$a Birchall, Kristian $u LifeArc (Formerly MRC Technology), Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, SG1 2FX, United Kingdom.
700    1_
$a Arnold, Laurence H $u LifeArc (Formerly MRC Technology), Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, SG1 2FX, United Kingdom.
700    1_
$a Mpamhanga, Chido $u LifeArc (Formerly MRC Technology), Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, SG1 2FX, United Kingdom.
700    1_
$a Coombs, Peter J $u LifeArc (Formerly MRC Technology), Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, SG1 2FX, United Kingdom.
700    1_
$a Burgess, Selena G $u Astbury Centre for Structural and Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds , Leeds LS2 9JT, United Kingdom.
700    1_
$a Richards, Mark W $u Astbury Centre for Structural and Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds , Leeds LS2 9JT, United Kingdom.
700    1_
$a Winter, Anja $u Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester , Leicester, LE1 9HN, United Kingdom.
700    1_
$a Veverka, Václav $u Institute of Organic Chemistry and Biochemistry , Flemingovo nám. 542/2, Prague 6, Prague, 166 10, Czech Republic.
700    1_
$a Delft, Frank von $u Diamond Light Source, Harwell Science and Innovation Campus , Didcot, OX11 0DE, United Kingdom. Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford , Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom. Department of Biochemistry, University of Johannesburg , Auckland Park, 2006, South Africa.
700    1_
$a Merritt, Andy $u LifeArc (Formerly MRC Technology), Stevenage Bioscience Catalyst , Gunnels Wood Road, Stevenage, SG1 2FX, United Kingdom.
700    1_
$a Bayliss, Richard $u Astbury Centre for Structural and Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds , Leeds LS2 9JT, United Kingdom.
773    0_
$w MED00179502 $t ACS chemical biology $x 1554-8937 $g Roč. 12, č. 11 (2017), s. 2906-2914
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29045126 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180515 $b ABA008
991    __
$a 20180518130209 $b ABA008
999    __
$a ok $b bmc $g 1299899 $s 1013115
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 12 $c 11 $d 2906-2914 $e 20171030 $i 1554-8937 $m ACS chemical biology $n ACS Chem Biol $x MED00179502
LZP    __
$a Pubmed-20180515

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...