• Je něco špatně v tomto záznamu ?

Metabolic and Proliferative State of Vascular Adventitial Fibroblasts in Pulmonary Hypertension Is Regulated Through a MicroRNA-124/PTBP1 (Polypyrimidine Tract Binding Protein 1)/Pyruvate Kinase Muscle Axis

H. Zhang, D. Wang, M. Li, L. Plecitá-Hlavatá, A. D'Alessandro, J. Tauber, S. Riddle, S. Kumar, A. Flockton, BA. McKeon, MG. Frid, JA. Reisz, P. Caruso, KC. El Kasmi, P. Ježek, NW. Morrell, CJ. Hu, KR. Stenmark,

. 2017 ; 136 (25) : 2468-2485. [pub] 20170926

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18016309

BACKGROUND: An emerging metabolic theory of pulmonary hypertension (PH) suggests that cellular and mitochondrial metabolic dysfunction underlies the pathology of this disease. We and others have previously demonstrated the existence of hyperproliferative, apoptosis-resistant, proinflammatory adventitial fibroblasts from human and bovine hypertensive pulmonary arterial walls (PH-Fibs) that exhibit constitutive reprogramming of glycolytic and mitochondrial metabolism, accompanied by an increased ratio of glucose catabolism through glycolysis versus the tricarboxylic acid cycle. However, the mechanisms responsible for these metabolic alterations in PH-Fibs remain unknown. We hypothesized that in PH-Fibs microRNA-124 (miR-124) regulates PTBP1 (polypyrimidine tract binding protein 1) expression to control alternative splicing of pyruvate kinase muscle (PKM) isoforms 1 and 2, resulting in an increased PKM2/PKM1 ratio, which promotes glycolysis and proliferation even in aerobic environments. METHODS: Pulmonary adventitial fibroblasts were isolated from calves and humans with severe PH (PH-Fibs) and from normal subjects. PTBP1 gene knockdown was achieved via PTBP1-siRNA; restoration of miR-124 was performed with miR-124 mimic. TEPP-46 and shikonin were used to manipulate PKM2 glycolytic function. Histone deacetylase inhibitors were used to treat cells. Metabolic products were determined by mass spectrometry-based metabolomics analyses, and mitochondrial function was analyzed by confocal microscopy and spectrofluorometry. RESULTS: We detected an increased PKM2/PKM1 ratio in PH-Fibs compared with normal subjects. PKM2 inhibition reversed the glycolytic status of PH-Fibs, decreased their cell proliferation, and attenuated macrophage interleukin-1β expression. Furthermore, normalizing the PKM2/PKM1 ratio in PH-Fibs by miR-124 overexpression or PTBP1 knockdown reversed the glycolytic phenotype (decreased the production of glycolytic intermediates and byproducts, ie, lactate), rescued mitochondrial reprogramming, and decreased cell proliferation. Pharmacological manipulation of PKM2 activity with TEPP-46 and shikonin or treatment with histone deacetylase inhibitors produced similar results. CONCLUSIONS: In PH, miR-124, through the alternative splicing factor PTBP1, regulates the PKM2/PKM1 ratio, the overall metabolic, proliferative, and inflammatory state of cells. This PH phenotype can be rescued with interventions at various levels of the metabolic cascade. These findings suggest a more integrated view of vascular cell metabolism, which may open unique therapeutic prospects in targeting the dynamic glycolytic and mitochondrial interactions and between mesenchymal inflammatory cells in PH.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18016309
003      
CZ-PrNML
005      
20180517141320.0
007      
ta
008      
180515s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1161/CIRCULATIONAHA.117.028069 $2 doi
035    __
$a (PubMed)28972001
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zhang, Hui $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.).
245    10
$a Metabolic and Proliferative State of Vascular Adventitial Fibroblasts in Pulmonary Hypertension Is Regulated Through a MicroRNA-124/PTBP1 (Polypyrimidine Tract Binding Protein 1)/Pyruvate Kinase Muscle Axis / $c H. Zhang, D. Wang, M. Li, L. Plecitá-Hlavatá, A. D'Alessandro, J. Tauber, S. Riddle, S. Kumar, A. Flockton, BA. McKeon, MG. Frid, JA. Reisz, P. Caruso, KC. El Kasmi, P. Ježek, NW. Morrell, CJ. Hu, KR. Stenmark,
520    9_
$a BACKGROUND: An emerging metabolic theory of pulmonary hypertension (PH) suggests that cellular and mitochondrial metabolic dysfunction underlies the pathology of this disease. We and others have previously demonstrated the existence of hyperproliferative, apoptosis-resistant, proinflammatory adventitial fibroblasts from human and bovine hypertensive pulmonary arterial walls (PH-Fibs) that exhibit constitutive reprogramming of glycolytic and mitochondrial metabolism, accompanied by an increased ratio of glucose catabolism through glycolysis versus the tricarboxylic acid cycle. However, the mechanisms responsible for these metabolic alterations in PH-Fibs remain unknown. We hypothesized that in PH-Fibs microRNA-124 (miR-124) regulates PTBP1 (polypyrimidine tract binding protein 1) expression to control alternative splicing of pyruvate kinase muscle (PKM) isoforms 1 and 2, resulting in an increased PKM2/PKM1 ratio, which promotes glycolysis and proliferation even in aerobic environments. METHODS: Pulmonary adventitial fibroblasts were isolated from calves and humans with severe PH (PH-Fibs) and from normal subjects. PTBP1 gene knockdown was achieved via PTBP1-siRNA; restoration of miR-124 was performed with miR-124 mimic. TEPP-46 and shikonin were used to manipulate PKM2 glycolytic function. Histone deacetylase inhibitors were used to treat cells. Metabolic products were determined by mass spectrometry-based metabolomics analyses, and mitochondrial function was analyzed by confocal microscopy and spectrofluorometry. RESULTS: We detected an increased PKM2/PKM1 ratio in PH-Fibs compared with normal subjects. PKM2 inhibition reversed the glycolytic status of PH-Fibs, decreased their cell proliferation, and attenuated macrophage interleukin-1β expression. Furthermore, normalizing the PKM2/PKM1 ratio in PH-Fibs by miR-124 overexpression or PTBP1 knockdown reversed the glycolytic phenotype (decreased the production of glycolytic intermediates and byproducts, ie, lactate), rescued mitochondrial reprogramming, and decreased cell proliferation. Pharmacological manipulation of PKM2 activity with TEPP-46 and shikonin or treatment with histone deacetylase inhibitors produced similar results. CONCLUSIONS: In PH, miR-124, through the alternative splicing factor PTBP1, regulates the PKM2/PKM1 ratio, the overall metabolic, proliferative, and inflammatory state of cells. This PH phenotype can be rescued with interventions at various levels of the metabolic cascade. These findings suggest a more integrated view of vascular cell metabolism, which may open unique therapeutic prospects in targeting the dynamic glycolytic and mitochondrial interactions and between mesenchymal inflammatory cells in PH.
650    _2
$a alternativní sestřih $7 D017398
650    _2
$a zvířata $7 D000818
650    _2
$a antagomiry $x metabolismus $7 D000070416
650    _2
$a skot $7 D002417
650    _2
$a proliferace buněk $7 D049109
650    _2
$a cévní endotel $x cytologie $7 D004730
650    _2
$a fibroblasty $x cytologie $x účinky léků $x metabolismus $7 D005347
650    _2
$a glykolýza $7 D006019
650    _2
$a heterogenní jaderné ribonukleoproteiny $x antagonisté a inhibitory $x genetika $x metabolismus $7 D034441
650    _2
$a inhibitory histondeacetylas $x farmakologie $7 D056572
650    _2
$a lidé $7 D006801
650    _2
$a plicní hypertenze $x metabolismus $x patologie $7 D006976
650    _2
$a interleukin-1beta $x metabolismus $7 D053583
650    _2
$a makrofágy $x cytologie $x imunologie $x metabolismus $7 D008264
650    _2
$a myši $7 D051379
650    _2
$a myši inbrední C57BL $7 D008810
650    _2
$a mikro RNA $x antagonisté a inhibitory $x genetika $x metabolismus $7 D035683
650    _2
$a naftochinony $x farmakologie $7 D009285
650    _2
$a protein vázající polypyrimidinové úseky RNA $x antagonisté a inhibitory $x genetika $x metabolismus $7 D038941
650    _2
$a protein - isoformy $x antagonisté a inhibitory $x genetika $x metabolismus $7 D020033
650    _2
$a pyruvátkinasa $x antagonisté a inhibitory $x genetika $x metabolismus $7 D011770
650    _2
$a RNA interference $7 D034622
655    _2
$a časopisecké články $7 D016428
700    1_
$a Wang, Daren $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.).
700    1_
$a Li, Min $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.).
700    1_
$a Plecitá-Hlavatá, Lydie $u University of Colorado Anschutz Medical Campus, Aurora. Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague (L.P.-H., J.T., P.J.).
700    1_
$a D'Alessandro, Angelo $u Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., J.A.R.).
700    1_
$a Tauber, Jan $u University of Colorado Anschutz Medical Campus, Aurora. Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague (L.P.-H., J.T., P.J.).
700    1_
$a Riddle, Suzette $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.).
700    1_
$a Kumar, Sushil $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.).
700    1_
$a Flockton, Amanda $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.).
700    1_
$a McKeon, B Alexandre $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.).
700    1_
$a Frid, Maria G $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.).
700    1_
$a Reisz, Julie A $u Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., J.A.R.).
700    1_
$a Caruso, Paola $u Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., N.W.M.).
700    1_
$a El Kasmi, Karim C $u Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.).
700    1_
$a Ježek, Petr $u University of Colorado Anschutz Medical Campus, Aurora. Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague (L.P.-H., J.T., P.J.).
700    1_
$a Morrell, Nicholas W $u Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., N.W.M.).
700    1_
$a Hu, Cheng-Jun $u Department of Craniofacial Biology, School of Dental Medicine (C.-J.H.).
700    1_
$a Stenmark, Kurt R $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.) kurt.stenmark@ucdenver.edu.
773    0_
$w MED00001091 $t Circulation $x 1524-4539 $g Roč. 136, č. 25 (2017), s. 2468-2485
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28972001 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180515 $b ABA008
991    __
$a 20180517141457 $b ABA008
999    __
$a ok $b bmc $g 1299933 $s 1013149
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 136 $c 25 $d 2468-2485 $e 20170926 $i 1524-4539 $m Circulation (New York, N.Y.) $n Circulation (New York) $x MED00001091
LZP    __
$a Pubmed-20180515

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...