-
Je něco špatně v tomto záznamu ?
Metabolic and Proliferative State of Vascular Adventitial Fibroblasts in Pulmonary Hypertension Is Regulated Through a MicroRNA-124/PTBP1 (Polypyrimidine Tract Binding Protein 1)/Pyruvate Kinase Muscle Axis
H. Zhang, D. Wang, M. Li, L. Plecitá-Hlavatá, A. D'Alessandro, J. Tauber, S. Riddle, S. Kumar, A. Flockton, BA. McKeon, MG. Frid, JA. Reisz, P. Caruso, KC. El Kasmi, P. Ježek, NW. Morrell, CJ. Hu, KR. Stenmark,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Free Medical Journals
od 1950 do Před 1 rokem
Open Access Digital Library
od 1950-01-01
Open Access Digital Library
od 1950-01-01
- MeSH
- alternativní sestřih MeSH
- antagomiry metabolismus MeSH
- cévní endotel cytologie MeSH
- fibroblasty cytologie účinky léků metabolismus MeSH
- glykolýza MeSH
- heterogenní jaderné ribonukleoproteiny antagonisté a inhibitory genetika metabolismus MeSH
- inhibitory histondeacetylas farmakologie MeSH
- interleukin-1beta metabolismus MeSH
- lidé MeSH
- makrofágy cytologie imunologie metabolismus MeSH
- mikro RNA antagonisté a inhibitory genetika metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- naftochinony farmakologie MeSH
- plicní hypertenze metabolismus patologie MeSH
- proliferace buněk MeSH
- protein - isoformy antagonisté a inhibitory genetika metabolismus MeSH
- protein vázající polypyrimidinové úseky RNA antagonisté a inhibitory genetika metabolismus MeSH
- pyruvátkinasa antagonisté a inhibitory genetika metabolismus MeSH
- RNA interference MeSH
- skot MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: An emerging metabolic theory of pulmonary hypertension (PH) suggests that cellular and mitochondrial metabolic dysfunction underlies the pathology of this disease. We and others have previously demonstrated the existence of hyperproliferative, apoptosis-resistant, proinflammatory adventitial fibroblasts from human and bovine hypertensive pulmonary arterial walls (PH-Fibs) that exhibit constitutive reprogramming of glycolytic and mitochondrial metabolism, accompanied by an increased ratio of glucose catabolism through glycolysis versus the tricarboxylic acid cycle. However, the mechanisms responsible for these metabolic alterations in PH-Fibs remain unknown. We hypothesized that in PH-Fibs microRNA-124 (miR-124) regulates PTBP1 (polypyrimidine tract binding protein 1) expression to control alternative splicing of pyruvate kinase muscle (PKM) isoforms 1 and 2, resulting in an increased PKM2/PKM1 ratio, which promotes glycolysis and proliferation even in aerobic environments. METHODS: Pulmonary adventitial fibroblasts were isolated from calves and humans with severe PH (PH-Fibs) and from normal subjects. PTBP1 gene knockdown was achieved via PTBP1-siRNA; restoration of miR-124 was performed with miR-124 mimic. TEPP-46 and shikonin were used to manipulate PKM2 glycolytic function. Histone deacetylase inhibitors were used to treat cells. Metabolic products were determined by mass spectrometry-based metabolomics analyses, and mitochondrial function was analyzed by confocal microscopy and spectrofluorometry. RESULTS: We detected an increased PKM2/PKM1 ratio in PH-Fibs compared with normal subjects. PKM2 inhibition reversed the glycolytic status of PH-Fibs, decreased their cell proliferation, and attenuated macrophage interleukin-1β expression. Furthermore, normalizing the PKM2/PKM1 ratio in PH-Fibs by miR-124 overexpression or PTBP1 knockdown reversed the glycolytic phenotype (decreased the production of glycolytic intermediates and byproducts, ie, lactate), rescued mitochondrial reprogramming, and decreased cell proliferation. Pharmacological manipulation of PKM2 activity with TEPP-46 and shikonin or treatment with histone deacetylase inhibitors produced similar results. CONCLUSIONS: In PH, miR-124, through the alternative splicing factor PTBP1, regulates the PKM2/PKM1 ratio, the overall metabolic, proliferative, and inflammatory state of cells. This PH phenotype can be rescued with interventions at various levels of the metabolic cascade. These findings suggest a more integrated view of vascular cell metabolism, which may open unique therapeutic prospects in targeting the dynamic glycolytic and mitochondrial interactions and between mesenchymal inflammatory cells in PH.
Cardiovascular Pulmonary Research Laboratories Departments of Pediatrics and Medicine
Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource
Department of Craniofacial Biology School of Dental Medicine
Department of Pediatrics Division of Gastroenterology Hepatology and Nutrition
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18016309
- 003
- CZ-PrNML
- 005
- 20180517141320.0
- 007
- ta
- 008
- 180515s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1161/CIRCULATIONAHA.117.028069 $2 doi
- 035 __
- $a (PubMed)28972001
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Zhang, Hui $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.).
- 245 10
- $a Metabolic and Proliferative State of Vascular Adventitial Fibroblasts in Pulmonary Hypertension Is Regulated Through a MicroRNA-124/PTBP1 (Polypyrimidine Tract Binding Protein 1)/Pyruvate Kinase Muscle Axis / $c H. Zhang, D. Wang, M. Li, L. Plecitá-Hlavatá, A. D'Alessandro, J. Tauber, S. Riddle, S. Kumar, A. Flockton, BA. McKeon, MG. Frid, JA. Reisz, P. Caruso, KC. El Kasmi, P. Ježek, NW. Morrell, CJ. Hu, KR. Stenmark,
- 520 9_
- $a BACKGROUND: An emerging metabolic theory of pulmonary hypertension (PH) suggests that cellular and mitochondrial metabolic dysfunction underlies the pathology of this disease. We and others have previously demonstrated the existence of hyperproliferative, apoptosis-resistant, proinflammatory adventitial fibroblasts from human and bovine hypertensive pulmonary arterial walls (PH-Fibs) that exhibit constitutive reprogramming of glycolytic and mitochondrial metabolism, accompanied by an increased ratio of glucose catabolism through glycolysis versus the tricarboxylic acid cycle. However, the mechanisms responsible for these metabolic alterations in PH-Fibs remain unknown. We hypothesized that in PH-Fibs microRNA-124 (miR-124) regulates PTBP1 (polypyrimidine tract binding protein 1) expression to control alternative splicing of pyruvate kinase muscle (PKM) isoforms 1 and 2, resulting in an increased PKM2/PKM1 ratio, which promotes glycolysis and proliferation even in aerobic environments. METHODS: Pulmonary adventitial fibroblasts were isolated from calves and humans with severe PH (PH-Fibs) and from normal subjects. PTBP1 gene knockdown was achieved via PTBP1-siRNA; restoration of miR-124 was performed with miR-124 mimic. TEPP-46 and shikonin were used to manipulate PKM2 glycolytic function. Histone deacetylase inhibitors were used to treat cells. Metabolic products were determined by mass spectrometry-based metabolomics analyses, and mitochondrial function was analyzed by confocal microscopy and spectrofluorometry. RESULTS: We detected an increased PKM2/PKM1 ratio in PH-Fibs compared with normal subjects. PKM2 inhibition reversed the glycolytic status of PH-Fibs, decreased their cell proliferation, and attenuated macrophage interleukin-1β expression. Furthermore, normalizing the PKM2/PKM1 ratio in PH-Fibs by miR-124 overexpression or PTBP1 knockdown reversed the glycolytic phenotype (decreased the production of glycolytic intermediates and byproducts, ie, lactate), rescued mitochondrial reprogramming, and decreased cell proliferation. Pharmacological manipulation of PKM2 activity with TEPP-46 and shikonin or treatment with histone deacetylase inhibitors produced similar results. CONCLUSIONS: In PH, miR-124, through the alternative splicing factor PTBP1, regulates the PKM2/PKM1 ratio, the overall metabolic, proliferative, and inflammatory state of cells. This PH phenotype can be rescued with interventions at various levels of the metabolic cascade. These findings suggest a more integrated view of vascular cell metabolism, which may open unique therapeutic prospects in targeting the dynamic glycolytic and mitochondrial interactions and between mesenchymal inflammatory cells in PH.
- 650 _2
- $a alternativní sestřih $7 D017398
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a antagomiry $x metabolismus $7 D000070416
- 650 _2
- $a skot $7 D002417
- 650 _2
- $a proliferace buněk $7 D049109
- 650 _2
- $a cévní endotel $x cytologie $7 D004730
- 650 _2
- $a fibroblasty $x cytologie $x účinky léků $x metabolismus $7 D005347
- 650 _2
- $a glykolýza $7 D006019
- 650 _2
- $a heterogenní jaderné ribonukleoproteiny $x antagonisté a inhibitory $x genetika $x metabolismus $7 D034441
- 650 _2
- $a inhibitory histondeacetylas $x farmakologie $7 D056572
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a plicní hypertenze $x metabolismus $x patologie $7 D006976
- 650 _2
- $a interleukin-1beta $x metabolismus $7 D053583
- 650 _2
- $a makrofágy $x cytologie $x imunologie $x metabolismus $7 D008264
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši inbrední C57BL $7 D008810
- 650 _2
- $a mikro RNA $x antagonisté a inhibitory $x genetika $x metabolismus $7 D035683
- 650 _2
- $a naftochinony $x farmakologie $7 D009285
- 650 _2
- $a protein vázající polypyrimidinové úseky RNA $x antagonisté a inhibitory $x genetika $x metabolismus $7 D038941
- 650 _2
- $a protein - isoformy $x antagonisté a inhibitory $x genetika $x metabolismus $7 D020033
- 650 _2
- $a pyruvátkinasa $x antagonisté a inhibitory $x genetika $x metabolismus $7 D011770
- 650 _2
- $a RNA interference $7 D034622
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Wang, Daren $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.).
- 700 1_
- $a Li, Min $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.).
- 700 1_
- $a Plecitá-Hlavatá, Lydie $u University of Colorado Anschutz Medical Campus, Aurora. Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague (L.P.-H., J.T., P.J.).
- 700 1_
- $a D'Alessandro, Angelo $u Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., J.A.R.).
- 700 1_
- $a Tauber, Jan $u University of Colorado Anschutz Medical Campus, Aurora. Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague (L.P.-H., J.T., P.J.).
- 700 1_
- $a Riddle, Suzette $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.).
- 700 1_
- $a Kumar, Sushil $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.).
- 700 1_
- $a Flockton, Amanda $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.).
- 700 1_
- $a McKeon, B Alexandre $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.).
- 700 1_
- $a Frid, Maria G $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.).
- 700 1_
- $a Reisz, Julie A $u Department of Biochemistry and Molecular Genetics and Biological Mass Spectrometry Shared Resource (A.D., J.A.R.).
- 700 1_
- $a Caruso, Paola $u Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., N.W.M.).
- 700 1_
- $a El Kasmi, Karim C $u Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition (K.C.E.K.).
- 700 1_
- $a Ježek, Petr $u University of Colorado Anschutz Medical Campus, Aurora. Department of Mitochondrial Physiology, Institute of Physiology, Czech Academy of Sciences, Prague (L.P.-H., J.T., P.J.).
- 700 1_
- $a Morrell, Nicholas W $u Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, United Kingdom (P.C., N.W.M.).
- 700 1_
- $a Hu, Cheng-Jun $u Department of Craniofacial Biology, School of Dental Medicine (C.-J.H.).
- 700 1_
- $a Stenmark, Kurt R $u Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine (H.Z., D.W., M.L., S.R., S.K., A.F., B.A.M., M.G.F., K.R.S.) kurt.stenmark@ucdenver.edu.
- 773 0_
- $w MED00001091 $t Circulation $x 1524-4539 $g Roč. 136, č. 25 (2017), s. 2468-2485
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28972001 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180517141457 $b ABA008
- 999 __
- $a ok $b bmc $g 1299933 $s 1013149
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 136 $c 25 $d 2468-2485 $e 20170926 $i 1524-4539 $m Circulation (New York, N.Y.) $n Circulation (New York) $x MED00001091
- LZP __
- $a Pubmed-20180515