-
Something wrong with this record ?
The molten-globule residual structure is critical for reflavination of glucose oxidase
K. Garajová, M. Zimmermann, M. Petrenčáková, L. Dzurová, M. Nemergut, Ľ. Škultéty, G. Žoldák, E. Sedlák,
Language English Country Netherlands
Document type Journal Article
- MeSH
- Aspergillus niger enzymology MeSH
- Biocatalysis MeSH
- Circular Dichroism MeSH
- Calorimetry, Differential Scanning MeSH
- Flavin-Adenine Dinucleotide chemistry metabolism MeSH
- Glucose Oxidase chemistry metabolism MeSH
- Protein Multimerization MeSH
- Protein Isoforms chemistry metabolism MeSH
- Protein Structure, Secondary MeSH
- Spectrophotometry, Ultraviolet MeSH
- Protein Stability MeSH
- Temperature MeSH
- Protein Structure, Tertiary MeSH
- Publication type
- Journal Article MeSH
Glucose oxidase (GOX) is a homodimeric glycoprotein with tightly bound one molecule of FAD cofactor per monomer of the protein. GOX has numerous applications, but the preparation of biotechnologically interesting GOX sensors requires a removal of the native FAD cofactor. This process often leads to unwanted irreversible deflavination and, as a consequence, to the low enzyme recovery. Molecular mechanisms of reversible reflavination are poorly understood; our current knowledge is based only on empiric rules, which is clearly insufficient for further development. To develop conceptual understanding of flavin-binding competent states, we studied the effect of deflavination protocols on conformational properties of GOX. After deflavination, the apoform assembles into soluble oligomers with nearly native-like holoform secondary structure but largely destabilized tertiary structure presumambly due to the packing density defects around the vacant flavin binding site. The reflavination is cooperative but not fully efficient; after the binding the flavin cofactor, the protein directly disassembles into native homodimers while the fraction of oligomers remains irreversibly inactivated. Importantly, the effect of Hofmeister salts on the conformational properties of GOX and reflavination efficiency indicates that the native-like residual tertiary structure in the molten-globule states favorably supports the reflavination and minimizes the inactivated oligomers. We interpret our results by combining the ligand-induced changes in quaternary structure with salt-sensitive, non-equilibrated conformational selection model. In summary, our work provides the very first steps toward molecular understanding the complexity of the GOX reflavination mechanism.
Biomedical Research Centre Slovak Academy of Sciences Dúbravská cesta 9 845 05 Bratislava Slovakia
Department of Biochemistry University of Zurich Winterthurerstrasse 190 CH 8057 Zurich Switzerland
Department of Biophysics P J Šafárik University in Košice Jesenná 5 04154 Košice Slovakia
Institute of Microbiology of the CAS v v i Videnska 1083 142 20 Prague 4 Czech Republic
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18016361
- 003
- CZ-PrNML
- 005
- 20180521134335.0
- 007
- ta
- 008
- 180515s2017 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bpc.2017.08.009 $2 doi
- 035 __
- $a (PubMed)28887045
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Garajová, Katarína $u Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia.
- 245 14
- $a The molten-globule residual structure is critical for reflavination of glucose oxidase / $c K. Garajová, M. Zimmermann, M. Petrenčáková, L. Dzurová, M. Nemergut, Ľ. Škultéty, G. Žoldák, E. Sedlák,
- 520 9_
- $a Glucose oxidase (GOX) is a homodimeric glycoprotein with tightly bound one molecule of FAD cofactor per monomer of the protein. GOX has numerous applications, but the preparation of biotechnologically interesting GOX sensors requires a removal of the native FAD cofactor. This process often leads to unwanted irreversible deflavination and, as a consequence, to the low enzyme recovery. Molecular mechanisms of reversible reflavination are poorly understood; our current knowledge is based only on empiric rules, which is clearly insufficient for further development. To develop conceptual understanding of flavin-binding competent states, we studied the effect of deflavination protocols on conformational properties of GOX. After deflavination, the apoform assembles into soluble oligomers with nearly native-like holoform secondary structure but largely destabilized tertiary structure presumambly due to the packing density defects around the vacant flavin binding site. The reflavination is cooperative but not fully efficient; after the binding the flavin cofactor, the protein directly disassembles into native homodimers while the fraction of oligomers remains irreversibly inactivated. Importantly, the effect of Hofmeister salts on the conformational properties of GOX and reflavination efficiency indicates that the native-like residual tertiary structure in the molten-globule states favorably supports the reflavination and minimizes the inactivated oligomers. We interpret our results by combining the ligand-induced changes in quaternary structure with salt-sensitive, non-equilibrated conformational selection model. In summary, our work provides the very first steps toward molecular understanding the complexity of the GOX reflavination mechanism.
- 650 _2
- $a Aspergillus niger $x enzymologie $7 D001234
- 650 _2
- $a biokatalýza $7 D055162
- 650 _2
- $a diferenciální skenovací kalorimetrie $7 D002152
- 650 _2
- $a cirkulární dichroismus $7 D002942
- 650 _2
- $a flavinadenindinukleotid $x chemie $x metabolismus $7 D005182
- 650 _2
- $a glukosaoxidasa $x chemie $x metabolismus $7 D005949
- 650 _2
- $a protein - isoformy $x chemie $x metabolismus $7 D020033
- 650 _2
- $a multimerizace proteinu $7 D055503
- 650 _2
- $a stabilita proteinů $7 D055550
- 650 _2
- $a sekundární struktura proteinů $7 D017433
- 650 _2
- $a terciární struktura proteinů $7 D017434
- 650 _2
- $a spektrofotometrie ultrafialová $7 D013056
- 650 _2
- $a teplota $7 D013696
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Zimmermann, Martina $u Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
- 700 1_
- $a Petrenčáková, Martina $u Department of Biophysics, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia.
- 700 1_
- $a Dzurová, Lenka $u Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia.
- 700 1_
- $a Nemergut, Michal $u Department of Biophysics, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia.
- 700 1_
- $a Škultéty, Ľudovít $u Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia; Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic.
- 700 1_
- $a Žoldák, Gabriel $u Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia. Electronic address: gabriel.zoldak@tum.de.
- 700 1_
- $a Sedlák, Erik $u Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia; Centre for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia. Electronic address: erik.sedlak@upjs.sk.
- 773 0_
- $w MED00000773 $t Biophysical chemistry $x 1873-4200 $g Roč. 230, č. - (2017), s. 74-83
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28887045 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180521134517 $b ABA008
- 999 __
- $a ok $b bmc $g 1299985 $s 1013201
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 230 $c - $d 74-83 $e 20170901 $i 1873-4200 $m Biophysical chemistry $n Biophys Chem $x MED00000773
- LZP __
- $a Pubmed-20180515