• Je něco špatně v tomto záznamu ?

The molten-globule residual structure is critical for reflavination of glucose oxidase

K. Garajová, M. Zimmermann, M. Petrenčáková, L. Dzurová, M. Nemergut, Ľ. Škultéty, G. Žoldák, E. Sedlák,

. 2017 ; 230 (-) : 74-83. [pub] 20170901

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18016361

Glucose oxidase (GOX) is a homodimeric glycoprotein with tightly bound one molecule of FAD cofactor per monomer of the protein. GOX has numerous applications, but the preparation of biotechnologically interesting GOX sensors requires a removal of the native FAD cofactor. This process often leads to unwanted irreversible deflavination and, as a consequence, to the low enzyme recovery. Molecular mechanisms of reversible reflavination are poorly understood; our current knowledge is based only on empiric rules, which is clearly insufficient for further development. To develop conceptual understanding of flavin-binding competent states, we studied the effect of deflavination protocols on conformational properties of GOX. After deflavination, the apoform assembles into soluble oligomers with nearly native-like holoform secondary structure but largely destabilized tertiary structure presumambly due to the packing density defects around the vacant flavin binding site. The reflavination is cooperative but not fully efficient; after the binding the flavin cofactor, the protein directly disassembles into native homodimers while the fraction of oligomers remains irreversibly inactivated. Importantly, the effect of Hofmeister salts on the conformational properties of GOX and reflavination efficiency indicates that the native-like residual tertiary structure in the molten-globule states favorably supports the reflavination and minimizes the inactivated oligomers. We interpret our results by combining the ligand-induced changes in quaternary structure with salt-sensitive, non-equilibrated conformational selection model. In summary, our work provides the very first steps toward molecular understanding the complexity of the GOX reflavination mechanism.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18016361
003      
CZ-PrNML
005      
20180521134335.0
007      
ta
008      
180515s2017 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bpc.2017.08.009 $2 doi
035    __
$a (PubMed)28887045
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Garajová, Katarína $u Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia.
245    14
$a The molten-globule residual structure is critical for reflavination of glucose oxidase / $c K. Garajová, M. Zimmermann, M. Petrenčáková, L. Dzurová, M. Nemergut, Ľ. Škultéty, G. Žoldák, E. Sedlák,
520    9_
$a Glucose oxidase (GOX) is a homodimeric glycoprotein with tightly bound one molecule of FAD cofactor per monomer of the protein. GOX has numerous applications, but the preparation of biotechnologically interesting GOX sensors requires a removal of the native FAD cofactor. This process often leads to unwanted irreversible deflavination and, as a consequence, to the low enzyme recovery. Molecular mechanisms of reversible reflavination are poorly understood; our current knowledge is based only on empiric rules, which is clearly insufficient for further development. To develop conceptual understanding of flavin-binding competent states, we studied the effect of deflavination protocols on conformational properties of GOX. After deflavination, the apoform assembles into soluble oligomers with nearly native-like holoform secondary structure but largely destabilized tertiary structure presumambly due to the packing density defects around the vacant flavin binding site. The reflavination is cooperative but not fully efficient; after the binding the flavin cofactor, the protein directly disassembles into native homodimers while the fraction of oligomers remains irreversibly inactivated. Importantly, the effect of Hofmeister salts on the conformational properties of GOX and reflavination efficiency indicates that the native-like residual tertiary structure in the molten-globule states favorably supports the reflavination and minimizes the inactivated oligomers. We interpret our results by combining the ligand-induced changes in quaternary structure with salt-sensitive, non-equilibrated conformational selection model. In summary, our work provides the very first steps toward molecular understanding the complexity of the GOX reflavination mechanism.
650    _2
$a Aspergillus niger $x enzymologie $7 D001234
650    _2
$a biokatalýza $7 D055162
650    _2
$a diferenciální skenovací kalorimetrie $7 D002152
650    _2
$a cirkulární dichroismus $7 D002942
650    _2
$a flavinadenindinukleotid $x chemie $x metabolismus $7 D005182
650    _2
$a glukosaoxidasa $x chemie $x metabolismus $7 D005949
650    _2
$a protein - isoformy $x chemie $x metabolismus $7 D020033
650    _2
$a multimerizace proteinu $7 D055503
650    _2
$a stabilita proteinů $7 D055550
650    _2
$a sekundární struktura proteinů $7 D017433
650    _2
$a terciární struktura proteinů $7 D017434
650    _2
$a spektrofotometrie ultrafialová $7 D013056
650    _2
$a teplota $7 D013696
655    _2
$a časopisecké články $7 D016428
700    1_
$a Zimmermann, Martina $u Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
700    1_
$a Petrenčáková, Martina $u Department of Biophysics, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia.
700    1_
$a Dzurová, Lenka $u Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia.
700    1_
$a Nemergut, Michal $u Department of Biophysics, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia.
700    1_
$a Škultéty, Ľudovít $u Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia; Institute of Microbiology of the CAS, v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic.
700    1_
$a Žoldák, Gabriel $u Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia. Electronic address: gabriel.zoldak@tum.de.
700    1_
$a Sedlák, Erik $u Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia; Centre for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia. Electronic address: erik.sedlak@upjs.sk.
773    0_
$w MED00000773 $t Biophysical chemistry $x 1873-4200 $g Roč. 230, č. - (2017), s. 74-83
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28887045 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180515 $b ABA008
991    __
$a 20180521134517 $b ABA008
999    __
$a ok $b bmc $g 1299985 $s 1013201
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 230 $c - $d 74-83 $e 20170901 $i 1873-4200 $m Biophysical chemistry $n Biophys Chem $x MED00000773
LZP    __
$a Pubmed-20180515

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...