-
Je něco špatně v tomto záznamu ?
Controlling the time evolution of mAb N-linked glycosylation - Part II: Model-based predictions
TK. Villiger, E. Scibona, M. Stettler, H. Broly, M. Morbidelli, M. Soos,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27273889
DOI
10.1002/btpr.2315
Knihovny.cz E-zdroje
- MeSH
- biologické modely * MeSH
- bioreaktory MeSH
- časové faktory MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- glykosylace MeSH
- koncentrace vodíkových iontů MeSH
- kultivované buňky MeSH
- monoklonální protilátky chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
N-linked glycosylation is known to be a crucial factor for the therapeutic efficacy and safety of monoclonal antibodies (mAbs) and many other glycoproteins. The nontemplate process of glycosylation is influenced by external factors which have to be tightly controlled during the manufacturing process. In order to describe and predict mAb N-linked glycosylation patterns in a CHO-S cell fed-batch process, an existing dynamic mathematical model has been refined and coupled to an unstructured metabolic model. High-throughput cell culture experiments carried out in miniaturized bioreactors in combination with intracellular measurements of nucleotide sugars were used to tune the parameter configuration of the coupled models as a function of extracellular pH, manganese and galactose addition. The proposed modeling framework is able to predict the time evolution of N-linked glycosylation patterns during a fed-batch process as a function of time as well as the manipulated variables. A constant and varying mAb N-linked glycosylation pattern throughout the culture were chosen to demonstrate the predictive capability of the modeling framework, which is able to quantify the interconnected influence of media components and cell culture conditions. Such a model-based evaluation of feeding regimes using high-throughput tools and mathematical models gives rise to a more rational way to control and design cell culture processes with defined glycosylation patterns. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1135-1148, 2016.
Biotech Process Sciences Merck Serono S A Corsier sur Vevey 1809 Switzerland
Dept of Chemical Engineering University of Chemistry and Technology Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18016980
- 003
- CZ-PrNML
- 005
- 20180515103338.0
- 007
- ta
- 008
- 180515s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/btpr.2315 $2 doi
- 035 __
- $a (PubMed)27273889
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Villiger, Thomas K $u Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.
- 245 10
- $a Controlling the time evolution of mAb N-linked glycosylation - Part II: Model-based predictions / $c TK. Villiger, E. Scibona, M. Stettler, H. Broly, M. Morbidelli, M. Soos,
- 520 9_
- $a N-linked glycosylation is known to be a crucial factor for the therapeutic efficacy and safety of monoclonal antibodies (mAbs) and many other glycoproteins. The nontemplate process of glycosylation is influenced by external factors which have to be tightly controlled during the manufacturing process. In order to describe and predict mAb N-linked glycosylation patterns in a CHO-S cell fed-batch process, an existing dynamic mathematical model has been refined and coupled to an unstructured metabolic model. High-throughput cell culture experiments carried out in miniaturized bioreactors in combination with intracellular measurements of nucleotide sugars were used to tune the parameter configuration of the coupled models as a function of extracellular pH, manganese and galactose addition. The proposed modeling framework is able to predict the time evolution of N-linked glycosylation patterns during a fed-batch process as a function of time as well as the manipulated variables. A constant and varying mAb N-linked glycosylation pattern throughout the culture were chosen to demonstrate the predictive capability of the modeling framework, which is able to quantify the interconnected influence of media components and cell culture conditions. Such a model-based evaluation of feeding regimes using high-throughput tools and mathematical models gives rise to a more rational way to control and design cell culture processes with defined glycosylation patterns. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1135-1148, 2016.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a monoklonální protilátky $x chemie $x metabolismus $7 D000911
- 650 _2
- $a bioreaktory $7 D019149
- 650 _2
- $a CHO buňky $7 D016466
- 650 _2
- $a kultivované buňky $7 D002478
- 650 _2
- $a Cricetulus $7 D003412
- 650 _2
- $a glykosylace $7 D006031
- 650 _2
- $a koncentrace vodíkových iontů $7 D006863
- 650 12
- $a biologické modely $7 D008954
- 650 _2
- $a časové faktory $7 D013997
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Scibona, Ernesto $u Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.
- 700 1_
- $a Stettler, Matthieu $u Biotech Process Sciences, Merck-Serono S.A., Corsier-sur-Vevey, 1809, Switzerland.
- 700 1_
- $a Broly, Hervé $u Biotech Process Sciences, Merck-Serono S.A., Corsier-sur-Vevey, 1809, Switzerland.
- 700 1_
- $a Morbidelli, Massimo $u Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.
- 700 1_
- $a Soos, Miroslav $u Dept. of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic. miroslav.soos@chem.ethz.ch.
- 773 0_
- $w MED00000800 $t Biotechnology progress $x 1520-6033 $g Roč. 32, č. 5 (2016), s. 1135-1148
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27273889 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180515103512 $b ABA008
- 999 __
- $a ok $b bmc $g 1300604 $s 1013820
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 32 $c 5 $d 1135-1148 $e 20160701 $i 1520-6033 $m Biotechnology progress $n Biotechnol Prog $x MED00000800
- LZP __
- $a Pubmed-20180515