Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Controlling the time evolution of mAb N-linked glycosylation - Part II: Model-based predictions

TK. Villiger, E. Scibona, M. Stettler, H. Broly, M. Morbidelli, M. Soos,

. 2016 ; 32 (5) : 1135-1148. [pub] 20160701

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18016980

N-linked glycosylation is known to be a crucial factor for the therapeutic efficacy and safety of monoclonal antibodies (mAbs) and many other glycoproteins. The nontemplate process of glycosylation is influenced by external factors which have to be tightly controlled during the manufacturing process. In order to describe and predict mAb N-linked glycosylation patterns in a CHO-S cell fed-batch process, an existing dynamic mathematical model has been refined and coupled to an unstructured metabolic model. High-throughput cell culture experiments carried out in miniaturized bioreactors in combination with intracellular measurements of nucleotide sugars were used to tune the parameter configuration of the coupled models as a function of extracellular pH, manganese and galactose addition. The proposed modeling framework is able to predict the time evolution of N-linked glycosylation patterns during a fed-batch process as a function of time as well as the manipulated variables. A constant and varying mAb N-linked glycosylation pattern throughout the culture were chosen to demonstrate the predictive capability of the modeling framework, which is able to quantify the interconnected influence of media components and cell culture conditions. Such a model-based evaluation of feeding regimes using high-throughput tools and mathematical models gives rise to a more rational way to control and design cell culture processes with defined glycosylation patterns. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1135-1148, 2016.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18016980
003      
CZ-PrNML
005      
20180515103338.0
007      
ta
008      
180515s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/btpr.2315 $2 doi
035    __
$a (PubMed)27273889
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Villiger, Thomas K $u Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.
245    10
$a Controlling the time evolution of mAb N-linked glycosylation - Part II: Model-based predictions / $c TK. Villiger, E. Scibona, M. Stettler, H. Broly, M. Morbidelli, M. Soos,
520    9_
$a N-linked glycosylation is known to be a crucial factor for the therapeutic efficacy and safety of monoclonal antibodies (mAbs) and many other glycoproteins. The nontemplate process of glycosylation is influenced by external factors which have to be tightly controlled during the manufacturing process. In order to describe and predict mAb N-linked glycosylation patterns in a CHO-S cell fed-batch process, an existing dynamic mathematical model has been refined and coupled to an unstructured metabolic model. High-throughput cell culture experiments carried out in miniaturized bioreactors in combination with intracellular measurements of nucleotide sugars were used to tune the parameter configuration of the coupled models as a function of extracellular pH, manganese and galactose addition. The proposed modeling framework is able to predict the time evolution of N-linked glycosylation patterns during a fed-batch process as a function of time as well as the manipulated variables. A constant and varying mAb N-linked glycosylation pattern throughout the culture were chosen to demonstrate the predictive capability of the modeling framework, which is able to quantify the interconnected influence of media components and cell culture conditions. Such a model-based evaluation of feeding regimes using high-throughput tools and mathematical models gives rise to a more rational way to control and design cell culture processes with defined glycosylation patterns. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1135-1148, 2016.
650    _2
$a zvířata $7 D000818
650    _2
$a monoklonální protilátky $x chemie $x metabolismus $7 D000911
650    _2
$a bioreaktory $7 D019149
650    _2
$a CHO buňky $7 D016466
650    _2
$a kultivované buňky $7 D002478
650    _2
$a Cricetulus $7 D003412
650    _2
$a glykosylace $7 D006031
650    _2
$a koncentrace vodíkových iontů $7 D006863
650    12
$a biologické modely $7 D008954
650    _2
$a časové faktory $7 D013997
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Scibona, Ernesto $u Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.
700    1_
$a Stettler, Matthieu $u Biotech Process Sciences, Merck-Serono S.A., Corsier-sur-Vevey, 1809, Switzerland.
700    1_
$a Broly, Hervé $u Biotech Process Sciences, Merck-Serono S.A., Corsier-sur-Vevey, 1809, Switzerland.
700    1_
$a Morbidelli, Massimo $u Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.
700    1_
$a Soos, Miroslav $u Dept. of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic. miroslav.soos@chem.ethz.ch.
773    0_
$w MED00000800 $t Biotechnology progress $x 1520-6033 $g Roč. 32, č. 5 (2016), s. 1135-1148
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27273889 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180515 $b ABA008
991    __
$a 20180515103512 $b ABA008
999    __
$a ok $b bmc $g 1300604 $s 1013820
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 32 $c 5 $d 1135-1148 $e 20160701 $i 1520-6033 $m Biotechnology progress $n Biotechnol Prog $x MED00000800
LZP    __
$a Pubmed-20180515

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...