-
Je něco špatně v tomto záznamu ?
Controlling the time evolution of mAb N-linked glycosylation, Part I: Microbioreactor experiments
TK. Villiger, A. Roulet, A. Périlleux, M. Stettler, H. Broly, M. Morbidelli, M. Soos,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27254475
DOI
10.1002/btpr.2305
Knihovny.cz E-zdroje
- MeSH
- bioreaktory * MeSH
- časové faktory MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- glykosylace MeSH
- kultivované buňky MeSH
- monoklonální protilátky chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
N-linked glycosylation is of key importance for the efficacy of many biotherapeutic proteins such as monoclonal antibodies (mAbs). Media components and cell culture conditions have been shown to significantly affect N-linked glycosylation during the production of glycoproteins using mammalian cell fed-batch cultures. These parameters inevitably change in modern industrial processes with concentrated feed additions and cell densities beyond 2 × 107 cells/mL. In order to control the time-dependent changes of protein glycosylation, an automated microbioreactor system was used to investigate the effects of culture pH, ammonia, galactose, and manganese chloride supplementation on nucleotide sugars as well as mAb N-linked glycosylation in a time-dependent way. Two different strategies comprising of a single shift of culture conditions as well as multiple media supplementations along the culture duration were applied to obtain changing and constant glycosylation profiles. The different feeding approaches enabled constant glycosylation patterns throughout the entire culture duration at different levels. By modulating the time evolution of the mAb glycan pattern, not only the endpoint but also the ratios between different glycosylation structures could be modified. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1123-1134, 2016.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18016981
- 003
- CZ-PrNML
- 005
- 20180515103338.0
- 007
- ta
- 008
- 180515s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/btpr.2305 $2 doi
- 035 __
- $a (PubMed)27254475
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Villiger, Thomas K $u Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.
- 245 10
- $a Controlling the time evolution of mAb N-linked glycosylation, Part I: Microbioreactor experiments / $c TK. Villiger, A. Roulet, A. Périlleux, M. Stettler, H. Broly, M. Morbidelli, M. Soos,
- 520 9_
- $a N-linked glycosylation is of key importance for the efficacy of many biotherapeutic proteins such as monoclonal antibodies (mAbs). Media components and cell culture conditions have been shown to significantly affect N-linked glycosylation during the production of glycoproteins using mammalian cell fed-batch cultures. These parameters inevitably change in modern industrial processes with concentrated feed additions and cell densities beyond 2 × 107 cells/mL. In order to control the time-dependent changes of protein glycosylation, an automated microbioreactor system was used to investigate the effects of culture pH, ammonia, galactose, and manganese chloride supplementation on nucleotide sugars as well as mAb N-linked glycosylation in a time-dependent way. Two different strategies comprising of a single shift of culture conditions as well as multiple media supplementations along the culture duration were applied to obtain changing and constant glycosylation profiles. The different feeding approaches enabled constant glycosylation patterns throughout the entire culture duration at different levels. By modulating the time evolution of the mAb glycan pattern, not only the endpoint but also the ratios between different glycosylation structures could be modified. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1123-1134, 2016.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a monoklonální protilátky $x chemie $x metabolismus $7 D000911
- 650 12
- $a bioreaktory $7 D019149
- 650 _2
- $a CHO buňky $7 D016466
- 650 _2
- $a kultivované buňky $7 D002478
- 650 _2
- $a Cricetulus $7 D003412
- 650 _2
- $a glykosylace $7 D006031
- 650 _2
- $a časové faktory $7 D013997
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Roulet, Anaïs $u Biotech Process Sciences, Merck-Serono S.A., Corsier-sur-Vevey, ZI B 1809, Switzerland.
- 700 1_
- $a Périlleux, Arnaud $u Biotech Process Sciences, Merck-Serono S.A., Corsier-sur-Vevey, ZI B 1809, Switzerland.
- 700 1_
- $a Stettler, Matthieu $u Biotech Process Sciences, Merck-Serono S.A., Corsier-sur-Vevey, ZI B 1809, Switzerland.
- 700 1_
- $a Broly, Hervé $u Biotech Process Sciences, Merck-Serono S.A., Corsier-sur-Vevey, ZI B 1809, Switzerland.
- 700 1_
- $a Morbidelli, Massimo $u Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.
- 700 1_
- $a Soos, Miroslav $u Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland. miroslav.soos@chem.ethz.ch. Dept. of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic. miroslav.soos@chem.ethz.ch.
- 773 0_
- $w MED00000800 $t Biotechnology progress $x 1520-6033 $g Roč. 32, č. 5 (2016), s. 1123-1134
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27254475 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180515103511 $b ABA008
- 999 __
- $a ok $b bmc $g 1300605 $s 1013821
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 32 $c 5 $d 1123-1134 $e 20160627 $i 1520-6033 $m Biotechnology progress $n Biotechnol Prog $x MED00000800
- LZP __
- $a Pubmed-20180515