• Je něco špatně v tomto záznamu ?

Exocyst SEC3 and Phosphoinositides Define Sites of Exocytosis in Pollen Tube Initiation and Growth

D. Bloch, R. Pleskot, P. Pejchar, M. Potocký, P. Trpkošová, L. Cwiklik, N. Vukašinović, H. Sternberg, S. Yalovsky, V. Žárský,

. 2016 ; 172 (2) : 980-1002. [pub] 20160811

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18017099

Polarized exocytosis is critical for pollen tube growth, but its localization and function are still under debate. The exocyst vesicle-tethering complex functions in polarized exocytosis. Here, we show that a sec3a exocyst subunit null mutant cannot be transmitted through the male gametophyte due to a defect in pollen tube growth. The green fluorescent protein (GFP)-SEC3a fusion protein is functional and accumulates at or proximal to the pollen tube tip plasma membrane. Partial complementation of sec3a resulted in the development of pollen with multiple tips, indicating that SEC3 is required to determine the site of pollen germination pore formation. Time-lapse imaging demonstrated that SEC3a and SEC8 were highly dynamic and that SEC3a localization on the apical plasma membrane predicts the direction of growth. At the tip, polar SEC3a domains coincided with cell wall deposition. Labeling of GFP-SEC3a-expressing pollen with the endocytic marker FM4-64 revealed the presence of subdomains on the apical membrane characterized by extensive exocytosis. In steady-state growing tobacco (Nicotiana tabacum) pollen tubes, SEC3a displayed amino-terminal Pleckstrin homology-like domain (SEC3a-N)-dependent subapical membrane localization. In agreement, SEC3a-N interacted with phosphoinositides in vitro and colocalized with a phosphatidylinositol 4,5-bisphosphate (PIP2) marker in pollen tubes. Correspondingly, molecular dynamics simulations indicated that SEC3a-N associates with the membrane by interacting with PIP2 However, the interaction with PIP2 is not required for polar localization and the function of SEC3a in Arabidopsis (Arabidopsis thaliana). Taken together, our findings indicate that SEC3a is a critical determinant of polar exocytosis during tip growth and suggest differential regulation of the exocytotic machinery depending on pollen tube growth modes.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18017099
003      
CZ-PrNML
005      
20180515103243.0
007      
ta
008      
180515s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1104/pp.16.00690 $2 doi
035    __
$a (PubMed)27516531
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Bloch, Daria $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.).
245    10
$a Exocyst SEC3 and Phosphoinositides Define Sites of Exocytosis in Pollen Tube Initiation and Growth / $c D. Bloch, R. Pleskot, P. Pejchar, M. Potocký, P. Trpkošová, L. Cwiklik, N. Vukašinović, H. Sternberg, S. Yalovsky, V. Žárský,
520    9_
$a Polarized exocytosis is critical for pollen tube growth, but its localization and function are still under debate. The exocyst vesicle-tethering complex functions in polarized exocytosis. Here, we show that a sec3a exocyst subunit null mutant cannot be transmitted through the male gametophyte due to a defect in pollen tube growth. The green fluorescent protein (GFP)-SEC3a fusion protein is functional and accumulates at or proximal to the pollen tube tip plasma membrane. Partial complementation of sec3a resulted in the development of pollen with multiple tips, indicating that SEC3 is required to determine the site of pollen germination pore formation. Time-lapse imaging demonstrated that SEC3a and SEC8 were highly dynamic and that SEC3a localization on the apical plasma membrane predicts the direction of growth. At the tip, polar SEC3a domains coincided with cell wall deposition. Labeling of GFP-SEC3a-expressing pollen with the endocytic marker FM4-64 revealed the presence of subdomains on the apical membrane characterized by extensive exocytosis. In steady-state growing tobacco (Nicotiana tabacum) pollen tubes, SEC3a displayed amino-terminal Pleckstrin homology-like domain (SEC3a-N)-dependent subapical membrane localization. In agreement, SEC3a-N interacted with phosphoinositides in vitro and colocalized with a phosphatidylinositol 4,5-bisphosphate (PIP2) marker in pollen tubes. Correspondingly, molecular dynamics simulations indicated that SEC3a-N associates with the membrane by interacting with PIP2 However, the interaction with PIP2 is not required for polar localization and the function of SEC3a in Arabidopsis (Arabidopsis thaliana). Taken together, our findings indicate that SEC3a is a critical determinant of polar exocytosis during tip growth and suggest differential regulation of the exocytotic machinery depending on pollen tube growth modes.
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a Arabidopsis $x genetika $x růst a vývoj $x metabolismus $7 D017360
650    _2
$a proteiny huseníčku $x klasifikace $x genetika $x metabolismus $7 D029681
650    _2
$a sekvence nukleotidů $7 D001483
650    _2
$a vazebná místa $x genetika $7 D001665
650    _2
$a buněčná membrána $x metabolismus $7 D002462
650    12
$a exocytóza $7 D005089
650    _2
$a stanovení celkové genové exprese $x metody $7 D020869
650    _2
$a zelené fluorescenční proteiny $x genetika $x metabolismus $7 D049452
650    _2
$a konfokální mikroskopie $7 D018613
650    _2
$a simulace molekulární dynamiky $7 D056004
650    _2
$a mutace $7 D009154
650    _2
$a fosfatidylinositol-4,5-difosfát $x metabolismus $7 D019269
650    _2
$a fosfatidylinositoly $x metabolismus $7 D010716
650    _2
$a fylogeneze $7 D010802
650    _2
$a geneticky modifikované rostliny $7 D030821
650    _2
$a pyl $x genetika $x růst a vývoj $x metabolismus $7 D011058
650    _2
$a pylová láčka $x genetika $x růst a vývoj $x metabolismus $7 D053205
650    _2
$a vazba proteinů $7 D011485
650    _2
$a protein - isoformy $x genetika $x metabolismus $7 D020033
650    _2
$a polymerázová řetězová reakce s reverzní transkripcí $7 D020133
650    _2
$a sekvenční homologie aminokyselin $7 D017386
650    _2
$a sekvenční homologie nukleových kyselin $7 D012689
650    _2
$a časosběrné zobrazování $x metody $7 D059008
650    _2
$a vezikulární transportní proteiny $x klasifikace $x genetika $x metabolismus $7 D033921
655    _2
$a časopisecké články $7 D016428
700    1_
$a Pleskot, Roman $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.).
700    1_
$a Pejchar, Přemysl $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.).
700    1_
$a Potocký, Martin $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.).
700    1_
$a Trpkošová, Pavlína $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.).
700    1_
$a Cwiklik, Lukasz $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.).
700    1_
$a Vukašinović, Nemanja $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.).
700    1_
$a Sternberg, Hasana $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.).
700    1_
$a Yalovsky, Shaul $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.) shauly@tauex.tau.ac.il zarsky@ueb.cas.cz.
700    1_
$a Žárský, Viktor $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.) shauly@tauex.tau.ac.il zarsky@ueb.cas.cz.
773    0_
$w MED00005317 $t Plant physiology $x 1532-2548 $g Roč. 172, č. 2 (2016), s. 980-1002
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27516531 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180515 $b ABA008
991    __
$a 20180515103417 $b ABA008
999    __
$a ok $b bmc $g 1300723 $s 1013939
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 172 $c 2 $d 980-1002 $e 20160811 $i 1532-2548 $m Plant physiology $n Plant Physiol $x MED00005317
LZP    __
$a Pubmed-20180515

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...