-
Je něco špatně v tomto záznamu ?
Exocyst SEC3 and Phosphoinositides Define Sites of Exocytosis in Pollen Tube Initiation and Growth
D. Bloch, R. Pleskot, P. Pejchar, M. Potocký, P. Trpkošová, L. Cwiklik, N. Vukašinović, H. Sternberg, S. Yalovsky, V. Žárský,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Free Medical Journals
od 1926 do Před 1 rokem
Open Access Digital Library
od 1926-01-01
PubMed
27516531
DOI
10.1104/pp.16.00690
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis genetika růst a vývoj metabolismus MeSH
- buněčná membrána metabolismus MeSH
- časosběrné zobrazování metody MeSH
- exocytóza * MeSH
- fosfatidylinositol-4,5-difosfát metabolismus MeSH
- fosfatidylinositoly metabolismus MeSH
- fylogeneze MeSH
- geneticky modifikované rostliny MeSH
- konfokální mikroskopie MeSH
- mutace MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- protein - isoformy genetika metabolismus MeSH
- proteiny huseníčku klasifikace genetika metabolismus MeSH
- pyl genetika růst a vývoj metabolismus MeSH
- pylová láčka genetika růst a vývoj metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie aminokyselin MeSH
- sekvenční homologie nukleových kyselin MeSH
- simulace molekulární dynamiky MeSH
- stanovení celkové genové exprese metody MeSH
- vazba proteinů MeSH
- vazebná místa genetika MeSH
- vezikulární transportní proteiny klasifikace genetika metabolismus MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Polarized exocytosis is critical for pollen tube growth, but its localization and function are still under debate. The exocyst vesicle-tethering complex functions in polarized exocytosis. Here, we show that a sec3a exocyst subunit null mutant cannot be transmitted through the male gametophyte due to a defect in pollen tube growth. The green fluorescent protein (GFP)-SEC3a fusion protein is functional and accumulates at or proximal to the pollen tube tip plasma membrane. Partial complementation of sec3a resulted in the development of pollen with multiple tips, indicating that SEC3 is required to determine the site of pollen germination pore formation. Time-lapse imaging demonstrated that SEC3a and SEC8 were highly dynamic and that SEC3a localization on the apical plasma membrane predicts the direction of growth. At the tip, polar SEC3a domains coincided with cell wall deposition. Labeling of GFP-SEC3a-expressing pollen with the endocytic marker FM4-64 revealed the presence of subdomains on the apical membrane characterized by extensive exocytosis. In steady-state growing tobacco (Nicotiana tabacum) pollen tubes, SEC3a displayed amino-terminal Pleckstrin homology-like domain (SEC3a-N)-dependent subapical membrane localization. In agreement, SEC3a-N interacted with phosphoinositides in vitro and colocalized with a phosphatidylinositol 4,5-bisphosphate (PIP2) marker in pollen tubes. Correspondingly, molecular dynamics simulations indicated that SEC3a-N associates with the membrane by interacting with PIP2 However, the interaction with PIP2 is not required for polar localization and the function of SEC3a in Arabidopsis (Arabidopsis thaliana). Taken together, our findings indicate that SEC3a is a critical determinant of polar exocytosis during tip growth and suggest differential regulation of the exocytotic machinery depending on pollen tube growth modes.
Department of Molecular Biology and Ecology of Plants Tel Aviv University Tel Aviv 69978 Israel
Institute of Experimental Botany Czech Academy of Sciences 165 02 Prague Czech Republic
J Heyrovsky Institute of Physical Chemistry Czech Academy of Sciences 182 23 Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18017099
- 003
- CZ-PrNML
- 005
- 20180515103243.0
- 007
- ta
- 008
- 180515s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1104/pp.16.00690 $2 doi
- 035 __
- $a (PubMed)27516531
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Bloch, Daria $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.).
- 245 10
- $a Exocyst SEC3 and Phosphoinositides Define Sites of Exocytosis in Pollen Tube Initiation and Growth / $c D. Bloch, R. Pleskot, P. Pejchar, M. Potocký, P. Trpkošová, L. Cwiklik, N. Vukašinović, H. Sternberg, S. Yalovsky, V. Žárský,
- 520 9_
- $a Polarized exocytosis is critical for pollen tube growth, but its localization and function are still under debate. The exocyst vesicle-tethering complex functions in polarized exocytosis. Here, we show that a sec3a exocyst subunit null mutant cannot be transmitted through the male gametophyte due to a defect in pollen tube growth. The green fluorescent protein (GFP)-SEC3a fusion protein is functional and accumulates at or proximal to the pollen tube tip plasma membrane. Partial complementation of sec3a resulted in the development of pollen with multiple tips, indicating that SEC3 is required to determine the site of pollen germination pore formation. Time-lapse imaging demonstrated that SEC3a and SEC8 were highly dynamic and that SEC3a localization on the apical plasma membrane predicts the direction of growth. At the tip, polar SEC3a domains coincided with cell wall deposition. Labeling of GFP-SEC3a-expressing pollen with the endocytic marker FM4-64 revealed the presence of subdomains on the apical membrane characterized by extensive exocytosis. In steady-state growing tobacco (Nicotiana tabacum) pollen tubes, SEC3a displayed amino-terminal Pleckstrin homology-like domain (SEC3a-N)-dependent subapical membrane localization. In agreement, SEC3a-N interacted with phosphoinositides in vitro and colocalized with a phosphatidylinositol 4,5-bisphosphate (PIP2) marker in pollen tubes. Correspondingly, molecular dynamics simulations indicated that SEC3a-N associates with the membrane by interacting with PIP2 However, the interaction with PIP2 is not required for polar localization and the function of SEC3a in Arabidopsis (Arabidopsis thaliana). Taken together, our findings indicate that SEC3a is a critical determinant of polar exocytosis during tip growth and suggest differential regulation of the exocytotic machinery depending on pollen tube growth modes.
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a Arabidopsis $x genetika $x růst a vývoj $x metabolismus $7 D017360
- 650 _2
- $a proteiny huseníčku $x klasifikace $x genetika $x metabolismus $7 D029681
- 650 _2
- $a sekvence nukleotidů $7 D001483
- 650 _2
- $a vazebná místa $x genetika $7 D001665
- 650 _2
- $a buněčná membrána $x metabolismus $7 D002462
- 650 12
- $a exocytóza $7 D005089
- 650 _2
- $a stanovení celkové genové exprese $x metody $7 D020869
- 650 _2
- $a zelené fluorescenční proteiny $x genetika $x metabolismus $7 D049452
- 650 _2
- $a konfokální mikroskopie $7 D018613
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a fosfatidylinositol-4,5-difosfát $x metabolismus $7 D019269
- 650 _2
- $a fosfatidylinositoly $x metabolismus $7 D010716
- 650 _2
- $a fylogeneze $7 D010802
- 650 _2
- $a geneticky modifikované rostliny $7 D030821
- 650 _2
- $a pyl $x genetika $x růst a vývoj $x metabolismus $7 D011058
- 650 _2
- $a pylová láčka $x genetika $x růst a vývoj $x metabolismus $7 D053205
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a protein - isoformy $x genetika $x metabolismus $7 D020033
- 650 _2
- $a polymerázová řetězová reakce s reverzní transkripcí $7 D020133
- 650 _2
- $a sekvenční homologie aminokyselin $7 D017386
- 650 _2
- $a sekvenční homologie nukleových kyselin $7 D012689
- 650 _2
- $a časosběrné zobrazování $x metody $7 D059008
- 650 _2
- $a vezikulární transportní proteiny $x klasifikace $x genetika $x metabolismus $7 D033921
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Pleskot, Roman $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.).
- 700 1_
- $a Pejchar, Přemysl $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.).
- 700 1_
- $a Potocký, Martin $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.).
- 700 1_
- $a Trpkošová, Pavlína $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.).
- 700 1_
- $a Cwiklik, Lukasz $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.).
- 700 1_
- $a Vukašinović, Nemanja $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.).
- 700 1_
- $a Sternberg, Hasana $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.).
- 700 1_
- $a Yalovsky, Shaul $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.) shauly@tauex.tau.ac.il zarsky@ueb.cas.cz.
- 700 1_
- $a Žárský, Viktor $u Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel (D.B., H.S., S.Y.);Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic (R.P., P.P., M.P., P.T., N.V., V.Ž.);J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague, Czech Republic (L.C.); andDepartment of Experimental Plant Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic (N.V., V.Ž.) shauly@tauex.tau.ac.il zarsky@ueb.cas.cz.
- 773 0_
- $w MED00005317 $t Plant physiology $x 1532-2548 $g Roč. 172, č. 2 (2016), s. 980-1002
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27516531 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180515103417 $b ABA008
- 999 __
- $a ok $b bmc $g 1300723 $s 1013939
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 172 $c 2 $d 980-1002 $e 20160811 $i 1532-2548 $m Plant physiology $n Plant Physiol $x MED00005317
- LZP __
- $a Pubmed-20180515