-
Je něco špatně v tomto záznamu ?
The LSM1-7 Complex Differentially Regulates Arabidopsis Tolerance to Abiotic Stress Conditions by Promoting Selective mRNA Decapping
C. Perea-Resa, C. Carrasco-López, R. Catalá, V. Turečková, O. Novak, W. Zhang, L. Sieburth, JM. Jiménez-Gómez, J. Salinas,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
NLK
Free Medical Journals
od 1989 do Před 1 rokem
Freely Accessible Science Journals
od 1989 do Před 12 měsíci
Open Access Digital Library
od 1989-01-01
PubMed
26764377
DOI
10.1105/tpc.15.00867
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis genetika fyziologie MeSH
- biologické modely * MeSH
- chlorid sodný metabolismus MeSH
- endoribonukleasy genetika metabolismus MeSH
- fyziologická adaptace * MeSH
- fyziologický stres MeSH
- geneticky modifikované rostliny MeSH
- kyselina abscisová metabolismus MeSH
- messenger RNA genetika metabolismus MeSH
- nízká teplota MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- regulátory růstu rostlin metabolismus MeSH
- reportérové geny MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
In eukaryotes, the decapping machinery is highly conserved and plays an essential role in controlling mRNA stability, a key step in the regulation of gene expression. Yet, the role of mRNA decapping in shaping gene expression profiles in response to environmental cues and the operating molecular mechanisms are poorly understood. Here, we provide genetic and molecular evidence that a component of the decapping machinery, the LSM1-7 complex, plays a critical role in plant tolerance to abiotic stresses. Our results demonstrate that, depending on the stress, the complex from Arabidopsis thaliana interacts with different selected stress-inducible transcripts targeting them for decapping and subsequent degradation. This interaction ensures the correct turnover of the target transcripts and, consequently, the appropriate patterns of downstream stress-responsive gene expression that are required for plant adaptation. Remarkably, among the selected target transcripts of the LSM1-7 complex are those encoding NCED3 and NCED5, two key enzymes in abscisic acid (ABA) biosynthesis. We demonstrate that the complex modulates ABA levels in Arabidopsis exposed to cold and high salt by differentially controlling NCED3 and NCED5 mRNA turnover, which represents a new layer of regulation in ABA biosynthesis in response to abiotic stress. Our findings uncover an unanticipated functional plasticity of the mRNA decapping machinery to modulate the relationship between plants and their environment.
Departamento de Biología Medioambiental Centro de Investigaciones Biológicas CSIC 28040 Madrid Spain
Department of Biology University of Utah Salt Lake City Utah 84112
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18017363
- 003
- CZ-PrNML
- 005
- 20180515103055.0
- 007
- ta
- 008
- 180515s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1105/tpc.15.00867 $2 doi
- 035 __
- $a (PubMed)26764377
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Perea-Resa, Carlos $u Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain.
- 245 14
- $a The LSM1-7 Complex Differentially Regulates Arabidopsis Tolerance to Abiotic Stress Conditions by Promoting Selective mRNA Decapping / $c C. Perea-Resa, C. Carrasco-López, R. Catalá, V. Turečková, O. Novak, W. Zhang, L. Sieburth, JM. Jiménez-Gómez, J. Salinas,
- 520 9_
- $a In eukaryotes, the decapping machinery is highly conserved and plays an essential role in controlling mRNA stability, a key step in the regulation of gene expression. Yet, the role of mRNA decapping in shaping gene expression profiles in response to environmental cues and the operating molecular mechanisms are poorly understood. Here, we provide genetic and molecular evidence that a component of the decapping machinery, the LSM1-7 complex, plays a critical role in plant tolerance to abiotic stresses. Our results demonstrate that, depending on the stress, the complex from Arabidopsis thaliana interacts with different selected stress-inducible transcripts targeting them for decapping and subsequent degradation. This interaction ensures the correct turnover of the target transcripts and, consequently, the appropriate patterns of downstream stress-responsive gene expression that are required for plant adaptation. Remarkably, among the selected target transcripts of the LSM1-7 complex are those encoding NCED3 and NCED5, two key enzymes in abscisic acid (ABA) biosynthesis. We demonstrate that the complex modulates ABA levels in Arabidopsis exposed to cold and high salt by differentially controlling NCED3 and NCED5 mRNA turnover, which represents a new layer of regulation in ABA biosynthesis in response to abiotic stress. Our findings uncover an unanticipated functional plasticity of the mRNA decapping machinery to modulate the relationship between plants and their environment.
- 650 _2
- $a kyselina abscisová $x metabolismus $7 D000040
- 650 12
- $a fyziologická adaptace $7 D000222
- 650 _2
- $a Arabidopsis $x genetika $x fyziologie $7 D017360
- 650 _2
- $a proteiny huseníčku $x genetika $x metabolismus $7 D029681
- 650 _2
- $a nízká teplota $7 D003080
- 650 _2
- $a endoribonukleasy $x genetika $x metabolismus $7 D004722
- 650 12
- $a regulace genové exprese u rostlin $7 D018506
- 650 _2
- $a reportérové geny $7 D017930
- 650 12
- $a biologické modely $7 D008954
- 650 _2
- $a regulátory růstu rostlin $x metabolismus $7 D010937
- 650 _2
- $a geneticky modifikované rostliny $7 D030821
- 650 _2
- $a messenger RNA $x genetika $x metabolismus $7 D012333
- 650 _2
- $a chlorid sodný $x metabolismus $7 D012965
- 650 _2
- $a fyziologický stres $7 D013312
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Carrasco-López, Cristian $u Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain.
- 700 1_
- $a Catalá, Rafael $u Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain.
- 700 1_
- $a Turečková, Veronika $u Laboratory of Growth Regulators, Institute of Experimental Botany Academy of Sciences of the Czech Republic, v.v.i. & Palacký University, 78371 Olomouc, Czech Republic.
- 700 1_
- $a Novak, Ondrej $u Laboratory of Growth Regulators, Institute of Experimental Botany Academy of Sciences of the Czech Republic, v.v.i. & Palacký University, 78371 Olomouc, Czech Republic.
- 700 1_
- $a Zhang, Weiping $u Department of Biology, University of Utah, Salt Lake City, Utah 84112.
- 700 1_
- $a Sieburth, Leslie $u Department of Biology, University of Utah, Salt Lake City, Utah 84112.
- 700 1_
- $a Jiménez-Gómez, José Manuel $u Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany INRA, Institut Jean-Pierre Bourgin, UMR 1318, 78026 Versailles, France.
- 700 1_
- $a Salinas, Julio $u Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain salinas@cib.csic.es.
- 773 0_
- $w MED00005315 $t The Plant cell $x 1532-298X $g Roč. 28, č. 2 (2016), s. 505-20
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26764377 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180515 $b ABA008
- 991 __
- $a 20180515103229 $b ABA008
- 999 __
- $a ok $b bmc $g 1300987 $s 1014203
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 28 $c 2 $d 505-20 $e 20160113 $i 1532-298X $m The Plant cell $n Plant Cell $x MED00005315
- LZP __
- $a Pubmed-20180515