-
Je něco špatně v tomto záznamu ?
Microscopic time-resolved imaging of singlet oxygen by delayed fluorescence in living cells
M. Scholz, R. Dědic, J. Hála,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články
PubMed
28936518
DOI
10.1039/c7pp00132k
Knihovny.cz E-zdroje
- MeSH
- buňky 3T3 MeSH
- časové faktory MeSH
- fibroblasty chemie cytologie MeSH
- fluorescence * MeSH
- fluorescenční mikroskopie MeSH
- fotochemoterapie MeSH
- fotosenzibilizující látky chemie MeSH
- indoly chemie MeSH
- kultivované buňky MeSH
- myši MeSH
- optické zobrazování * MeSH
- organokovové sloučeniny chemie MeSH
- singletový kyslík analýza chemie MeSH
- viabilita buněk MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Singlet oxygen is a highly reactive species which is involved in a number of processes, including photodynamic therapy of cancer. Its very weak near-infrared emission makes imaging of singlet oxygen in biological systems a long-term challenge. We address this challenge by introducing Singlet Oxygen Feedback Delayed Fluorescence (SOFDF) as a novel modality for semi-direct microscopic time-resolved wide-field imaging of singlet oxygen in biological systems. SOFDF has been investigated in individual fibroblast cells incubated with a well-known photosensitizer aluminium phthalocyanine tetrasulfonate. The SOFDF emission from the cells is several orders of magnitude stronger and much more readily detectable than the very weak near-infrared phosphorescence of singlet oxygen. Moreover, the analysis of SOFDF kinetics enables us to estimate the lifetimes of the involved excited states. Real-time SOFDF images with micrometer spatial resolution and submicrosecond temporal-resolution have been recorded. Interestingly, a steep decrease in the SOFDF intensity after the photodynamically induced release of a photosensitizer from lysosomes has been demonstrated. This effect could be potentially employed as a valuable diagnostic tool for monitoring and dosimetry in photodynamic therapy.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18024630
- 003
- CZ-PrNML
- 005
- 20180719095037.0
- 007
- ta
- 008
- 180709s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1039/c7pp00132k $2 doi
- 035 __
- $a (PubMed)28936518
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Scholz, Marek $u Charles University, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Ke Karlovu 3, 121 16, Prague, The Czech Republic. mara.scholz@gmail.com.
- 245 10
- $a Microscopic time-resolved imaging of singlet oxygen by delayed fluorescence in living cells / $c M. Scholz, R. Dědic, J. Hála,
- 520 9_
- $a Singlet oxygen is a highly reactive species which is involved in a number of processes, including photodynamic therapy of cancer. Its very weak near-infrared emission makes imaging of singlet oxygen in biological systems a long-term challenge. We address this challenge by introducing Singlet Oxygen Feedback Delayed Fluorescence (SOFDF) as a novel modality for semi-direct microscopic time-resolved wide-field imaging of singlet oxygen in biological systems. SOFDF has been investigated in individual fibroblast cells incubated with a well-known photosensitizer aluminium phthalocyanine tetrasulfonate. The SOFDF emission from the cells is several orders of magnitude stronger and much more readily detectable than the very weak near-infrared phosphorescence of singlet oxygen. Moreover, the analysis of SOFDF kinetics enables us to estimate the lifetimes of the involved excited states. Real-time SOFDF images with micrometer spatial resolution and submicrosecond temporal-resolution have been recorded. Interestingly, a steep decrease in the SOFDF intensity after the photodynamically induced release of a photosensitizer from lysosomes has been demonstrated. This effect could be potentially employed as a valuable diagnostic tool for monitoring and dosimetry in photodynamic therapy.
- 650 _2
- $a buňky 3T3 $7 D016475
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a viabilita buněk $7 D002470
- 650 _2
- $a kultivované buňky $7 D002478
- 650 _2
- $a fibroblasty $x chemie $x cytologie $7 D005347
- 650 12
- $a fluorescence $7 D005453
- 650 _2
- $a indoly $x chemie $7 D007211
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a fluorescenční mikroskopie $7 D008856
- 650 12
- $a optické zobrazování $7 D061848
- 650 _2
- $a organokovové sloučeniny $x chemie $7 D009942
- 650 _2
- $a fotochemoterapie $7 D010778
- 650 _2
- $a fotosenzibilizující látky $x chemie $7 D017319
- 650 _2
- $a singletový kyslík $x analýza $x chemie $7 D026082
- 650 _2
- $a časové faktory $7 D013997
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Dědic, Roman
- 700 1_
- $a Hála, Jan
- 773 0_
- $w MED00169255 $t Photochemical & photobiological sciences Official journal of the European Photochemistry Association and the European Society for Photobiology $x 1474-9092 $g Roč. 16, č. 11 (2017), s. 1643-1653
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28936518 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180709 $b ABA008
- 991 __
- $a 20180719095338 $b ABA008
- 999 __
- $a ok $b bmc $g 1316761 $s 1021551
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 16 $c 11 $d 1643-1653 $i 1474-9092 $m Photochemical & photobiological sciences $n Protochem. photobiol. sci. $x MED00169255
- LZP __
- $a Pubmed-20180709