• Je něco špatně v tomto záznamu ?

Automated classification of cell morphology by coherence-controlled holographic microscopy

L. Strbkova, D. Zicha, P. Vesely, R. Chmelik,

. 2017 ; 22 (8) : 1-9.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18024714

In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18024714
003      
CZ-PrNML
005      
20180717082228.0
007      
ta
008      
180709s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1117/1.JBO.22.8.086008 $2 doi
035    __
$a (PubMed)28836416
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Strbkova, Lenka $u Brno University of Technology, Central European Institute of Technology, Brno, Czech Republic.
245    10
$a Automated classification of cell morphology by coherence-controlled holographic microscopy / $c L. Strbkova, D. Zicha, P. Vesely, R. Chmelik,
520    9_
$a In the last few years, classification of cells by machine learning has become frequently used in biology. However, most of the approaches are based on morphometric (MO) features, which are not quantitative in terms of cell mass. This may result in poor classification accuracy. Here, we study the potential contribution of coherence-controlled holographic microscopy enabling quantitative phase imaging for the classification of cell morphologies. We compare our approach with the commonly used method based on MO features. We tested both classification approaches in an experiment with nutritionally deprived cancer tissue cells, while employing several supervised machine learning algorithms. Most of the classifiers provided higher performance when quantitative phase features were employed. Based on the results, it can be concluded that the quantitative phase features played an important role in improving the performance of the classification. The methodology could be valuable help in refining the monitoring of live cells in an automated fashion. We believe that coherence-controlled holographic microscopy, as a tool for quantitative phase imaging, offers all preconditions for the accurate automated analysis of live cell behavior while enabling noninvasive label-free imaging with sufficient contrast and high-spatiotemporal phase sensitivity.
650    _2
$a algoritmy $7 D000465
650    _2
$a buňky $x klasifikace $x cytologie $7 D002477
650    _2
$a holografie $x metody $7 D006696
650    _2
$a lidé $7 D006801
650    _2
$a mikroskopie $x metody $7 D008853
650    _2
$a rozpoznávání automatizované $7 D010363
655    _2
$a časopisecké články $7 D016428
700    1_
$a Zicha, Daniel $u Brno University of Technology, Central European Institute of Technology, Brno, Czech Republic.
700    1_
$a Vesely, Pavel $u Brno University of Technology, Central European Institute of Technology, Brno, Czech Republic.
700    1_
$a Chmelik, Radim $u Brno University of Technology, Institute of Physical Engineering, Faculty of Mechanical Engineering,, Czech Republic.
773    0_
$w MED00180283 $t Journal of biomedical optics $x 1560-2281 $g Roč. 22, č. 8 (2017), s. 1-9
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28836416 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180709 $b ABA008
991    __
$a 20180717082527 $b ABA008
999    __
$a ok $b bmc $g 1316845 $s 1021635
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 22 $c 8 $d 1-9 $i 1560-2281 $m Journal of biomedical optics $n J Biomed Opt $x MED00180283
LZP    __
$a Pubmed-20180709

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...