• Je něco špatně v tomto záznamu ?

Glycosylation flux analysis reveals dynamic changes of intracellular glycosylation flux distribution in Chinese hamster ovary fed-batch cultures

S. Hutter, TK. Villiger, D. Brühlmann, M. Stettler, H. Broly, M. Soos, R. Gunawan,

. 2017 ; 43 (Pt A) : 9-20. [pub] 20170725

Jazyk angličtina Země Belgie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18024786

N-linked glycosylation of proteins has both functional and structural significance. Importantly, the glycan structure of a therapeutic protein influences its efficacy, pharmacokinetics, pharmacodynamics and immunogenicity. In this work, we developed glycosylation flux analysis (GFA) for predicting intracellular production and consumption rates (fluxes) of glycoforms, and applied this analysis to CHO fed-batch immunoglobulin G (IgG) production using two different media compositions, with and without additional manganese feeding. The GFA is based on a constraint-based modeling of the glycosylation network, employing a pseudo steady state assumption. While the glycosylation fluxes in the network are balanced at each time point, the GFA allows the fluxes to vary with time by way of two scaling factors: (1) an enzyme-specific factor that captures the temporal changes among glycosylation reactions catalysed by the same enzyme, and (2) the cell specific productivity factor that accounts for the dynamic changes in the IgG production rate. The GFA of the CHO fed-batch cultivations showed that regardless of the media composition, galactosylation fluxes decreased with the cultivation time more significantly than the other glycosylation reactions. Furthermore, the GFA showed that the addition of Mn, a cofactor of galactosyltransferase, has the effect of increasing the galactosylation fluxes but only during the beginning of the cultivation period. The results thus demonstrated the power of the GFA in delineating the dynamic alterations of the glycosylation fluxes by local (enzyme-specific) and global (cell specific productivity) factors.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18024786
003      
CZ-PrNML
005      
20180717102402.0
007      
ta
008      
180709s2017 be f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.ymben.2017.07.005 $2 doi
035    __
$a (PubMed)28754360
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a be
100    1_
$a Hutter, Sandro $u Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
245    10
$a Glycosylation flux analysis reveals dynamic changes of intracellular glycosylation flux distribution in Chinese hamster ovary fed-batch cultures / $c S. Hutter, TK. Villiger, D. Brühlmann, M. Stettler, H. Broly, M. Soos, R. Gunawan,
520    9_
$a N-linked glycosylation of proteins has both functional and structural significance. Importantly, the glycan structure of a therapeutic protein influences its efficacy, pharmacokinetics, pharmacodynamics and immunogenicity. In this work, we developed glycosylation flux analysis (GFA) for predicting intracellular production and consumption rates (fluxes) of glycoforms, and applied this analysis to CHO fed-batch immunoglobulin G (IgG) production using two different media compositions, with and without additional manganese feeding. The GFA is based on a constraint-based modeling of the glycosylation network, employing a pseudo steady state assumption. While the glycosylation fluxes in the network are balanced at each time point, the GFA allows the fluxes to vary with time by way of two scaling factors: (1) an enzyme-specific factor that captures the temporal changes among glycosylation reactions catalysed by the same enzyme, and (2) the cell specific productivity factor that accounts for the dynamic changes in the IgG production rate. The GFA of the CHO fed-batch cultivations showed that regardless of the media composition, galactosylation fluxes decreased with the cultivation time more significantly than the other glycosylation reactions. Furthermore, the GFA showed that the addition of Mn, a cofactor of galactosyltransferase, has the effect of increasing the galactosylation fluxes but only during the beginning of the cultivation period. The results thus demonstrated the power of the GFA in delineating the dynamic alterations of the glycosylation fluxes by local (enzyme-specific) and global (cell specific productivity) factors.
650    _2
$a zvířata $7 D000818
650    _2
$a CHO buňky $7 D016466
650    _2
$a křečci praví $7 D006224
650    _2
$a Cricetulus $7 D003412
650    _2
$a galaktosyltransferasy $x genetika $x metabolismus $7 D005700
650    _2
$a glykosylace $7 D006031
650    _2
$a imunoglobulin G $x biosyntéza $x genetika $7 D007074
650    _2
$a rekombinantní proteiny $x biosyntéza $x genetika $7 D011994
655    _2
$a časopisecké články $7 D016428
700    1_
$a Villiger, Thomas K $u Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
700    1_
$a Brühlmann, David $u Biotech Process Sciences, Merck Biopharma, 1804 Corsier-sur-Vevey, Switzerland.
700    1_
$a Stettler, Matthieu $u Biotech Process Sciences, Merck Biopharma, 1804 Corsier-sur-Vevey, Switzerland.
700    1_
$a Broly, Hervé $u Biotech Process Sciences, Merck Biopharma, 1804 Corsier-sur-Vevey, Switzerland.
700    1_
$a Soos, Miroslav $u Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland; Department of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic.
700    1_
$a Gunawan, Rudiyanto $u Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland. Electronic address: rudi.gunawan@chem.ethz.ch.
773    0_
$w MED00008640 $t Metabolic engineering $x 1096-7184 $g Roč. 43, č. Pt A (2017), s. 9-20
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28754360 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180709 $b ABA008
991    __
$a 20180717102701 $b ABA008
999    __
$a ok $b bmc $g 1316917 $s 1021707
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 43 $c Pt A $d 9-20 $e 20170725 $i 1096-7184 $m Metabolic engineering $n Metab Eng $x MED00008640
LZP    __
$a Pubmed-20180709

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...