-
Je něco špatně v tomto záznamu ?
Breathing Analysis Using Thermal and Depth Imaging Camera Video Records
A. Procházka, H. Charvátová, O. Vyšata, J. Kopal, J. Chambers,
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2001
PubMed Central
od 2003
Europe PubMed Central
od 2003
ProQuest Central
od 2001-01-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2003-01-01
Health & Medicine (ProQuest)
od 2001-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2001
PubMed
28621708
DOI
10.3390/s17061408
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- dýchání * MeSH
- počítačové zpracování obrazu MeSH
- pohyb těles MeSH
- umělá inteligence MeSH
- Publikační typ
- časopisecké články MeSH
The paper is devoted to the study of facial region temperature changes using a simple thermal imaging camera and to the comparison of their time evolution with the pectoral area motion recorded by the MS Kinect depth sensor. The goal of this research is to propose the use of video records as alternative diagnostics of breathing disorders allowing their analysis in the home environment as well. The methods proposed include (i) specific image processing algorithms for detecting facial parts with periodic temperature changes; (ii) computational intelligence tools for analysing the associated videosequences; and (iii) digital filters and spectral estimation tools for processing the depth matrices. Machine learning applied to thermal imaging camera calibration allowed the recognition of its digital information with an accuracy close to 100% for the classification of individual temperature values. The proposed detection of breathing features was used for monitoring of physical activities by the home exercise bike. The results include a decrease of breathing temperature and its frequency after a load, with mean values -0.16 °C/min and -0.72 bpm respectively, for the given set of experiments. The proposed methods verify that thermal and depth cameras can be used as additional tools for multimodal detection of breathing patterns.
Faculty of Applied Informatics Tomas Bata University in Zlín 760 05 Zlín Czech Republic
School of Electrical and Electronic Engineering Newcastle University Newcastle upon Tyne NE1 7RU UK
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18024930
- 003
- CZ-PrNML
- 005
- 20180710095247.0
- 007
- ta
- 008
- 180709s2017 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/s17061408 $2 doi
- 035 __
- $a (PubMed)28621708
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Procházka, Aleš $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Prague, Czech Republic. A.Prochazka@ieee.org.
- 245 10
- $a Breathing Analysis Using Thermal and Depth Imaging Camera Video Records / $c A. Procházka, H. Charvátová, O. Vyšata, J. Kopal, J. Chambers,
- 520 9_
- $a The paper is devoted to the study of facial region temperature changes using a simple thermal imaging camera and to the comparison of their time evolution with the pectoral area motion recorded by the MS Kinect depth sensor. The goal of this research is to propose the use of video records as alternative diagnostics of breathing disorders allowing their analysis in the home environment as well. The methods proposed include (i) specific image processing algorithms for detecting facial parts with periodic temperature changes; (ii) computational intelligence tools for analysing the associated videosequences; and (iii) digital filters and spectral estimation tools for processing the depth matrices. Machine learning applied to thermal imaging camera calibration allowed the recognition of its digital information with an accuracy close to 100% for the classification of individual temperature values. The proposed detection of breathing features was used for monitoring of physical activities by the home exercise bike. The results include a decrease of breathing temperature and its frequency after a load, with mean values -0.16 °C/min and -0.72 bpm respectively, for the given set of experiments. The proposed methods verify that thermal and depth cameras can be used as additional tools for multimodal detection of breathing patterns.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a umělá inteligence $7 D001185
- 650 _2
- $a počítačové zpracování obrazu $7 D007091
- 650 _2
- $a pohyb těles $7 D009038
- 650 12
- $a dýchání $7 D012119
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Charvátová, Hana $u Faculty of Applied Informatics, Tomas Bata University in Zlín, 760 05 Zlín, Czech Republic. hcharvatova@email.cz.
- 700 1_
- $a Vyšata, Oldřich $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Prague, Czech Republic. Vysatao@gmail.com. Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, 166 36 Prague, Czech Republic. Vysatao@gmail.com. Faculty of Medicine in Hradec Králové, Department of Neurology, Charles University, 500 05 Hradec Kralove, Czech Republic. Vysatao@gmail.com.
- 700 1_
- $a Kopal, Jakub $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Prague, Czech Republic. Jakub.Kopal@vscht.cz.
- 700 1_
- $a Chambers, Jonathon $u School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK. Jonathon.Chambers@newcastle.ac.uk.
- 773 0_
- $w MED00008309 $t Sensors (Basel, Switzerland) $x 1424-8220 $g Roč. 17, č. 6 (2017)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28621708 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180709 $b ABA008
- 991 __
- $a 20180710095536 $b ABA008
- 999 __
- $a ok $b bmc $g 1317061 $s 1021851
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 17 $c 6 $e 20170616 $i 1424-8220 $m Sensors $n Sensors Basel $x MED00008309
- LZP __
- $a Pubmed-20180709