Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes

V. Franke, S. Ganesh, R. Karlic, R. Malik, J. Pasulka, F. Horvat, M. Kuzman, H. Fulka, M. Cernohorska, J. Urbanova, E. Svobodova, J. Ma, Y. Suzuki, F. Aoki, RM. Schultz, K. Vlahovicek, P. Svoboda,

. 2017 ; 27 (8) : 1384-1394. [pub] 20170518

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/bmc18025010
E-zdroje Online Plný text

NLK Free Medical Journals od 1991 do Před 6 měsíci
Freely Accessible Science Journals od 1991-08-01 do Před 1 rokem
PubMed Central od 1997 do Před 6 měsíci
Europe PubMed Central od 1997 do Před 6 měsíci
Open Access Digital Library od 1991-08-01
Open Access Digital Library od 1991-08-01

Retrotransposons are "copy-and-paste" insertional mutagens that substantially contribute to mammalian genome content. Retrotransposons often carry long terminal repeats (LTRs) for retrovirus-like reverse transcription and integration into the genome. We report an extraordinary impact of a group of LTRs from the mammalian endogenous retrovirus-related ERVL retrotransposon class on gene expression in the germline and beyond. In mouse, we identified more than 800 LTRs from ORR1, MT, MT2, and MLT families, which resemble mobile gene-remodeling platforms that supply promoters and first exons. The LTR-mediated gene remodeling also extends to hamster, human, and bovine oocytes. The LTRs function in a stage-specific manner during the oocyte-to-embryo transition by activating transcription, altering protein-coding sequences, producing noncoding RNAs, and even supporting evolution of new protein-coding genes. These functions result, for example, in recycling processed pseudogenes into mRNAs or lncRNAs with regulatory roles. The functional potential of the studied LTRs is even higher, because we show that dormant LTR promoter activity can rescue loss of an essential upstream promoter. We also report a novel protein-coding gene evolution-D6Ertd527e-in which an MT LTR provided a promoter and the 5' exon with a functional start codon while the bulk of the protein-coding sequence evolved through a CAG repeat expansion. Altogether, ERVL LTRs provide molecular mechanisms for stochastically scanning, rewiring, and recycling genetic information on an extraordinary scale. ERVL LTRs thus offer means for a comprehensive survey of the genome's expression potential, tightly intertwining with gene expression and evolution in the germline.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18025010
003      
CZ-PrNML
005      
20180716094619.0
007      
ta
008      
180709s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1101/gr.216150.116 $2 doi
035    __
$a (PubMed)28522611
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Franke, Vedran $u Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
245    10
$a Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes / $c V. Franke, S. Ganesh, R. Karlic, R. Malik, J. Pasulka, F. Horvat, M. Kuzman, H. Fulka, M. Cernohorska, J. Urbanova, E. Svobodova, J. Ma, Y. Suzuki, F. Aoki, RM. Schultz, K. Vlahovicek, P. Svoboda,
520    9_
$a Retrotransposons are "copy-and-paste" insertional mutagens that substantially contribute to mammalian genome content. Retrotransposons often carry long terminal repeats (LTRs) for retrovirus-like reverse transcription and integration into the genome. We report an extraordinary impact of a group of LTRs from the mammalian endogenous retrovirus-related ERVL retrotransposon class on gene expression in the germline and beyond. In mouse, we identified more than 800 LTRs from ORR1, MT, MT2, and MLT families, which resemble mobile gene-remodeling platforms that supply promoters and first exons. The LTR-mediated gene remodeling also extends to hamster, human, and bovine oocytes. The LTRs function in a stage-specific manner during the oocyte-to-embryo transition by activating transcription, altering protein-coding sequences, producing noncoding RNAs, and even supporting evolution of new protein-coding genes. These functions result, for example, in recycling processed pseudogenes into mRNAs or lncRNAs with regulatory roles. The functional potential of the studied LTRs is even higher, because we show that dormant LTR promoter activity can rescue loss of an essential upstream promoter. We also report a novel protein-coding gene evolution-D6Ertd527e-in which an MT LTR provided a promoter and the 5' exon with a functional start codon while the bulk of the protein-coding sequence evolved through a CAG repeat expansion. Altogether, ERVL LTRs provide molecular mechanisms for stochastically scanning, rewiring, and recycling genetic information on an extraordinary scale. ERVL LTRs thus offer means for a comprehensive survey of the genome's expression potential, tightly intertwining with gene expression and evolution in the germline.
650    _2
$a zvířata $7 D000818
650    _2
$a skot $7 D002417
650    _2
$a křečci praví $7 D006224
650    _2
$a endogenní retroviry $7 D020077
650    12
$a molekulární evoluce $7 D019143
650    12
$a regulace genové exprese $7 D005786
650    _2
$a lidé $7 D006801
650    _2
$a myši $7 D051379
650    _2
$a oocyty $x cytologie $x metabolismus $7 D009865
650    _2
$a promotorové oblasti (genetika) $7 D011401
650    12
$a retroelementy $7 D018626
650    12
$a koncové repetice $7 D020079
650    _2
$a genetická transkripce $7 D014158
650    _2
$a zygota $x cytologie $x metabolismus $7 D015053
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
700    1_
$a Ganesh, Sravya $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
700    1_
$a Karlic, Rosa $u Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
700    1_
$a Malik, Radek $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
700    1_
$a Pasulka, Josef $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
700    1_
$a Horvat, Filip $u Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
700    1_
$a Kuzman, Maja $u Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
700    1_
$a Fulka, Helena $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
700    1_
$a Cernohorska, Marketa $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
700    1_
$a Urbanova, Jana $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
700    1_
$a Svobodova, Eliska $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
700    1_
$a Ma, Jun $u Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
700    1_
$a Suzuki, Yutaka $u Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan.
700    1_
$a Aoki, Fugaku $u Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan.
700    1_
$a Schultz, Richard M $u Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
700    1_
$a Vlahovicek, Kristian $u Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
700    1_
$a Svoboda, Petr $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
773    0_
$w MED00001911 $t Genome research $x 1549-5469 $g Roč. 27, č. 8 (2017), s. 1384-1394
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28522611 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180709 $b ABA008
991    __
$a 20180716094917 $b ABA008
999    __
$a ok $b bmc $g 1317141 $s 1021931
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 27 $c 8 $d 1384-1394 $e 20170518 $i 1549-5469 $m Genome research $n Genome Res $x MED00001911
LZP    __
$a Pubmed-20180709

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...