-
Je něco špatně v tomto záznamu ?
Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes
V. Franke, S. Ganesh, R. Karlic, R. Malik, J. Pasulka, F. Horvat, M. Kuzman, H. Fulka, M. Cernohorska, J. Urbanova, E. Svobodova, J. Ma, Y. Suzuki, F. Aoki, RM. Schultz, K. Vlahovicek, P. Svoboda,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
NLK
Free Medical Journals
od 1991 do Před 6 měsíci
Freely Accessible Science Journals
od 1991-08-01 do Před 1 rokem
PubMed Central
od 1997 do Před 6 měsíci
Europe PubMed Central
od 1997 do Před 6 měsíci
Open Access Digital Library
od 1991-08-01
Open Access Digital Library
od 1991-08-01
PubMed
28522611
DOI
10.1101/gr.216150.116
Knihovny.cz E-zdroje
- MeSH
- endogenní retroviry MeSH
- genetická transkripce MeSH
- koncové repetice * MeSH
- křečci praví MeSH
- lidé MeSH
- molekulární evoluce * MeSH
- myši MeSH
- oocyty cytologie metabolismus MeSH
- promotorové oblasti (genetika) MeSH
- regulace genové exprese * MeSH
- retroelementy * MeSH
- skot MeSH
- zvířata MeSH
- zygota cytologie metabolismus MeSH
- Check Tag
- křečci praví MeSH
- lidé MeSH
- myši MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Retrotransposons are "copy-and-paste" insertional mutagens that substantially contribute to mammalian genome content. Retrotransposons often carry long terminal repeats (LTRs) for retrovirus-like reverse transcription and integration into the genome. We report an extraordinary impact of a group of LTRs from the mammalian endogenous retrovirus-related ERVL retrotransposon class on gene expression in the germline and beyond. In mouse, we identified more than 800 LTRs from ORR1, MT, MT2, and MLT families, which resemble mobile gene-remodeling platforms that supply promoters and first exons. The LTR-mediated gene remodeling also extends to hamster, human, and bovine oocytes. The LTRs function in a stage-specific manner during the oocyte-to-embryo transition by activating transcription, altering protein-coding sequences, producing noncoding RNAs, and even supporting evolution of new protein-coding genes. These functions result, for example, in recycling processed pseudogenes into mRNAs or lncRNAs with regulatory roles. The functional potential of the studied LTRs is even higher, because we show that dormant LTR promoter activity can rescue loss of an essential upstream promoter. We also report a novel protein-coding gene evolution-D6Ertd527e-in which an MT LTR provided a promoter and the 5' exon with a functional start codon while the bulk of the protein-coding sequence evolved through a CAG repeat expansion. Altogether, ERVL LTRs provide molecular mechanisms for stochastically scanning, rewiring, and recycling genetic information on an extraordinary scale. ERVL LTRs thus offer means for a comprehensive survey of the genome's expression potential, tightly intertwining with gene expression and evolution in the germline.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18025010
- 003
- CZ-PrNML
- 005
- 20180716094619.0
- 007
- ta
- 008
- 180709s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1101/gr.216150.116 $2 doi
- 035 __
- $a (PubMed)28522611
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Franke, Vedran $u Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
- 245 10
- $a Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes / $c V. Franke, S. Ganesh, R. Karlic, R. Malik, J. Pasulka, F. Horvat, M. Kuzman, H. Fulka, M. Cernohorska, J. Urbanova, E. Svobodova, J. Ma, Y. Suzuki, F. Aoki, RM. Schultz, K. Vlahovicek, P. Svoboda,
- 520 9_
- $a Retrotransposons are "copy-and-paste" insertional mutagens that substantially contribute to mammalian genome content. Retrotransposons often carry long terminal repeats (LTRs) for retrovirus-like reverse transcription and integration into the genome. We report an extraordinary impact of a group of LTRs from the mammalian endogenous retrovirus-related ERVL retrotransposon class on gene expression in the germline and beyond. In mouse, we identified more than 800 LTRs from ORR1, MT, MT2, and MLT families, which resemble mobile gene-remodeling platforms that supply promoters and first exons. The LTR-mediated gene remodeling also extends to hamster, human, and bovine oocytes. The LTRs function in a stage-specific manner during the oocyte-to-embryo transition by activating transcription, altering protein-coding sequences, producing noncoding RNAs, and even supporting evolution of new protein-coding genes. These functions result, for example, in recycling processed pseudogenes into mRNAs or lncRNAs with regulatory roles. The functional potential of the studied LTRs is even higher, because we show that dormant LTR promoter activity can rescue loss of an essential upstream promoter. We also report a novel protein-coding gene evolution-D6Ertd527e-in which an MT LTR provided a promoter and the 5' exon with a functional start codon while the bulk of the protein-coding sequence evolved through a CAG repeat expansion. Altogether, ERVL LTRs provide molecular mechanisms for stochastically scanning, rewiring, and recycling genetic information on an extraordinary scale. ERVL LTRs thus offer means for a comprehensive survey of the genome's expression potential, tightly intertwining with gene expression and evolution in the germline.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a skot $7 D002417
- 650 _2
- $a křečci praví $7 D006224
- 650 _2
- $a endogenní retroviry $7 D020077
- 650 12
- $a molekulární evoluce $7 D019143
- 650 12
- $a regulace genové exprese $7 D005786
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a oocyty $x cytologie $x metabolismus $7 D009865
- 650 _2
- $a promotorové oblasti (genetika) $7 D011401
- 650 12
- $a retroelementy $7 D018626
- 650 12
- $a koncové repetice $7 D020079
- 650 _2
- $a genetická transkripce $7 D014158
- 650 _2
- $a zygota $x cytologie $x metabolismus $7 D015053
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 700 1_
- $a Ganesh, Sravya $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
- 700 1_
- $a Karlic, Rosa $u Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
- 700 1_
- $a Malik, Radek $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
- 700 1_
- $a Pasulka, Josef $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
- 700 1_
- $a Horvat, Filip $u Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
- 700 1_
- $a Kuzman, Maja $u Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
- 700 1_
- $a Fulka, Helena $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
- 700 1_
- $a Cernohorska, Marketa $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
- 700 1_
- $a Urbanova, Jana $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
- 700 1_
- $a Svobodova, Eliska $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
- 700 1_
- $a Ma, Jun $u Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
- 700 1_
- $a Suzuki, Yutaka $u Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan.
- 700 1_
- $a Aoki, Fugaku $u Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan.
- 700 1_
- $a Schultz, Richard M $u Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
- 700 1_
- $a Vlahovicek, Kristian $u Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia.
- 700 1_
- $a Svoboda, Petr $u Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic.
- 773 0_
- $w MED00001911 $t Genome research $x 1549-5469 $g Roč. 27, č. 8 (2017), s. 1384-1394
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28522611 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180709 $b ABA008
- 991 __
- $a 20180716094917 $b ABA008
- 999 __
- $a ok $b bmc $g 1317141 $s 1021931
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 27 $c 8 $d 1384-1394 $e 20170518 $i 1549-5469 $m Genome research $n Genome Res $x MED00001911
- LZP __
- $a Pubmed-20180709