Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Multi-center machine learning in imaging psychiatry: A meta-model approach

P. Dluhoš, D. Schwarz, W. Cahn, N. van Haren, R. Kahn, F. Španiel, J. Horáček, T. Kašpárek, H. Schnack,

. 2017 ; 155 (-) : 10-24. [pub] 20170417

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18025077

Grantová podpora
NV15-29370A MZ0 CEP - Centrální evidence projektů

One of the biggest problems in automated diagnosis of psychiatric disorders from medical images is the lack of sufficiently large samples for training. Sample size is especially important in the case of highly heterogeneous disorders such as schizophrenia, where machine learning models built on relatively low numbers of subjects may suffer from poor generalizability. Via multicenter studies and consortium initiatives researchers have tried to solve this problem by combining data sets from multiple sites. The necessary sharing of (raw) data is, however, often hindered by legal and ethical issues. Moreover, in the case of very large samples, the computational complexity might become too large. The solution to this problem could be distributed learning. In this paper we investigated the possibility to create a meta-model by combining support vector machines (SVM) classifiers trained on the local datasets, without the need for sharing medical images or any other personal data. Validation was done in a 4-center setup comprising of 480 first-episode schizophrenia patients and healthy controls in total. We built SVM models to separate patients from controls based on three different kinds of imaging features derived from structural MRI scans, and compared models built on the joint multicenter data to the meta-models. The results showed that the combined meta-model had high similarity to the model built on all data pooled together and comparable classification performance on all three imaging features. Both similarity and performance was superior to that of the local models. We conclude that combining models is thus a viable alternative that facilitates data sharing and creating bigger and more informative models.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18025077
003      
CZ-PrNML
005      
20201031115108.0
007      
ta
008      
180709s2017 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.neuroimage.2017.03.027 $2 doi
035    __
$a (PubMed)28428048
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Dluhoš, Petr $u Behavioural and Social Neuroscience Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Psychiatry, University Hospital Brno and Masaryk University, Brno, Czech Republic. Electronic address: dluhos@mail.muni.cz.
245    10
$a Multi-center machine learning in imaging psychiatry: A meta-model approach / $c P. Dluhoš, D. Schwarz, W. Cahn, N. van Haren, R. Kahn, F. Španiel, J. Horáček, T. Kašpárek, H. Schnack,
520    9_
$a One of the biggest problems in automated diagnosis of psychiatric disorders from medical images is the lack of sufficiently large samples for training. Sample size is especially important in the case of highly heterogeneous disorders such as schizophrenia, where machine learning models built on relatively low numbers of subjects may suffer from poor generalizability. Via multicenter studies and consortium initiatives researchers have tried to solve this problem by combining data sets from multiple sites. The necessary sharing of (raw) data is, however, often hindered by legal and ethical issues. Moreover, in the case of very large samples, the computational complexity might become too large. The solution to this problem could be distributed learning. In this paper we investigated the possibility to create a meta-model by combining support vector machines (SVM) classifiers trained on the local datasets, without the need for sharing medical images or any other personal data. Validation was done in a 4-center setup comprising of 480 first-episode schizophrenia patients and healthy controls in total. We built SVM models to separate patients from controls based on three different kinds of imaging features derived from structural MRI scans, and compared models built on the joint multicenter data to the meta-models. The results showed that the combined meta-model had high similarity to the model built on all data pooled together and comparable classification performance on all three imaging features. Both similarity and performance was superior to that of the local models. We conclude that combining models is thus a viable alternative that facilitates data sharing and creating bigger and more informative models.
650    12
$a datové soubory jako téma $7 D066264
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a magnetická rezonanční tomografie $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    12
$a multicentrické studie jako téma $7 D015337
650    _2
$a neurozobrazování $x metody $7 D059906
650    _2
$a rozpoznávání automatizované $x metody $7 D010363
650    _2
$a schizofrenie $x diagnostické zobrazování $7 D012559
650    12
$a support vector machine $7 D060388
655    _2
$a časopisecké články $7 D016428
700    1_
$a Schwarz, Daniel $u Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic.
700    1_
$a Cahn, Wiepke $u Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands.
700    1_
$a van Haren, Neeltje $u Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands.
700    1_
$a Kahn, René $u Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands.
700    1_
$a Španiel, Filip $u National Institute of Mental Health, Klecany, Czech Republic.
700    1_
$a Horáček, Jiří $u National Institute of Mental Health, Klecany, Czech Republic.
700    1_
$a Kašpárek, Tomáš $u Behavioural and Social Neuroscience Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Psychiatry, University Hospital Brno and Masaryk University, Brno, Czech Republic.
700    1_
$a Schnack, Hugo $u Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands.
773    0_
$w MED00006575 $t NeuroImage $x 1095-9572 $g Roč. 155, č. - (2017), s. 10-24
856    41
$u https://pubmed.ncbi.nlm.nih.gov/28428048 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180709 $b ABA008
991    __
$a 20201031115107 $b ABA008
999    __
$a ok $b bmc $g 1317208 $s 1021998
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2017 $b 155 $c - $d 10-24 $e 20170417 $i 1095-9572 $m Neuroimage $n Neuroimage $x MED00006575
GRA    __
$a NV15-29370A $p MZ0
LZP    __
$a Pubmed-20180709

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...