-
Je něco špatně v tomto záznamu ?
Multi-center machine learning in imaging psychiatry: A meta-model approach
P. Dluhoš, D. Schwarz, W. Cahn, N. van Haren, R. Kahn, F. Španiel, J. Horáček, T. Kašpárek, H. Schnack,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
Grantová podpora
NV15-29370A
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
Zdroj
NLK
ProQuest Central
od 1998-05-01 do Před 2 měsíci
Health & Medicine (ProQuest)
od 2002-08-01 do Před 2 měsíci
Psychology Database (ProQuest)
od 2002-08-01 do Před 2 měsíci
ROAD: Directory of Open Access Scholarly Resources
- MeSH
- datové soubory jako téma * MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- multicentrické studie jako téma * MeSH
- neurozobrazování metody MeSH
- rozpoznávání automatizované metody MeSH
- schizofrenie diagnostické zobrazování MeSH
- support vector machine * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
One of the biggest problems in automated diagnosis of psychiatric disorders from medical images is the lack of sufficiently large samples for training. Sample size is especially important in the case of highly heterogeneous disorders such as schizophrenia, where machine learning models built on relatively low numbers of subjects may suffer from poor generalizability. Via multicenter studies and consortium initiatives researchers have tried to solve this problem by combining data sets from multiple sites. The necessary sharing of (raw) data is, however, often hindered by legal and ethical issues. Moreover, in the case of very large samples, the computational complexity might become too large. The solution to this problem could be distributed learning. In this paper we investigated the possibility to create a meta-model by combining support vector machines (SVM) classifiers trained on the local datasets, without the need for sharing medical images or any other personal data. Validation was done in a 4-center setup comprising of 480 first-episode schizophrenia patients and healthy controls in total. We built SVM models to separate patients from controls based on three different kinds of imaging features derived from structural MRI scans, and compared models built on the joint multicenter data to the meta-models. The results showed that the combined meta-model had high similarity to the model built on all data pooled together and comparable classification performance on all three imaging features. Both similarity and performance was superior to that of the local models. We conclude that combining models is thus a viable alternative that facilitates data sharing and creating bigger and more informative models.
Department of Psychiatry University Hospital Brno and Masaryk University Brno Czech Republic
Institute of Biostatistics and Analyses Masaryk University Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18025077
- 003
- CZ-PrNML
- 005
- 20201031115108.0
- 007
- ta
- 008
- 180709s2017 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.neuroimage.2017.03.027 $2 doi
- 035 __
- $a (PubMed)28428048
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Dluhoš, Petr $u Behavioural and Social Neuroscience Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Psychiatry, University Hospital Brno and Masaryk University, Brno, Czech Republic. Electronic address: dluhos@mail.muni.cz.
- 245 10
- $a Multi-center machine learning in imaging psychiatry: A meta-model approach / $c P. Dluhoš, D. Schwarz, W. Cahn, N. van Haren, R. Kahn, F. Španiel, J. Horáček, T. Kašpárek, H. Schnack,
- 520 9_
- $a One of the biggest problems in automated diagnosis of psychiatric disorders from medical images is the lack of sufficiently large samples for training. Sample size is especially important in the case of highly heterogeneous disorders such as schizophrenia, where machine learning models built on relatively low numbers of subjects may suffer from poor generalizability. Via multicenter studies and consortium initiatives researchers have tried to solve this problem by combining data sets from multiple sites. The necessary sharing of (raw) data is, however, often hindered by legal and ethical issues. Moreover, in the case of very large samples, the computational complexity might become too large. The solution to this problem could be distributed learning. In this paper we investigated the possibility to create a meta-model by combining support vector machines (SVM) classifiers trained on the local datasets, without the need for sharing medical images or any other personal data. Validation was done in a 4-center setup comprising of 480 first-episode schizophrenia patients and healthy controls in total. We built SVM models to separate patients from controls based on three different kinds of imaging features derived from structural MRI scans, and compared models built on the joint multicenter data to the meta-models. The results showed that the combined meta-model had high similarity to the model built on all data pooled together and comparable classification performance on all three imaging features. Both similarity and performance was superior to that of the local models. We conclude that combining models is thus a viable alternative that facilitates data sharing and creating bigger and more informative models.
- 650 12
- $a datové soubory jako téma $7 D066264
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a magnetická rezonanční tomografie $7 D008279
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 12
- $a multicentrické studie jako téma $7 D015337
- 650 _2
- $a neurozobrazování $x metody $7 D059906
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 650 _2
- $a schizofrenie $x diagnostické zobrazování $7 D012559
- 650 12
- $a support vector machine $7 D060388
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Schwarz, Daniel $u Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Cahn, Wiepke $u Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands.
- 700 1_
- $a van Haren, Neeltje $u Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands.
- 700 1_
- $a Kahn, René $u Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands.
- 700 1_
- $a Španiel, Filip $u National Institute of Mental Health, Klecany, Czech Republic.
- 700 1_
- $a Horáček, Jiří $u National Institute of Mental Health, Klecany, Czech Republic.
- 700 1_
- $a Kašpárek, Tomáš $u Behavioural and Social Neuroscience Group, CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Psychiatry, University Hospital Brno and Masaryk University, Brno, Czech Republic.
- 700 1_
- $a Schnack, Hugo $u Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands.
- 773 0_
- $w MED00006575 $t NeuroImage $x 1095-9572 $g Roč. 155, č. - (2017), s. 10-24
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28428048 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180709 $b ABA008
- 991 __
- $a 20201031115107 $b ABA008
- 999 __
- $a ok $b bmc $g 1317208 $s 1021998
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 155 $c - $d 10-24 $e 20170417 $i 1095-9572 $m Neuroimage $n Neuroimage $x MED00006575
- GRA __
- $a NV15-29370A $p MZ0
- LZP __
- $a Pubmed-20180709