-
Je něco špatně v tomto záznamu ?
The complex nature of calcium cation interactions with phospholipid bilayers
A. Melcrová, S. Pokorna, S. Pullanchery, M. Kohagen, P. Jurkiewicz, M. Hof, P. Jungwirth, PS. Cremer, L. Cwiklik,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
PubMed
27905555
DOI
10.1038/srep38035
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána metabolismus MeSH
- fosfolipidy chemie metabolismus MeSH
- lipidové dvojvrstvy chemie metabolismus MeSH
- liposomy chemie metabolismus MeSH
- molekulární modely MeSH
- simulace molekulární dynamiky MeSH
- vápník metabolismus MeSH
- vápníková signalizace MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18025243
- 003
- CZ-PrNML
- 005
- 20180710093840.0
- 007
- ta
- 008
- 180709s2016 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/srep38035 $2 doi
- 035 __
- $a (PubMed)27905555
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Melcrová, Adéla $u J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, Prague, 18223, Czech Republic.
- 245 14
- $a The complex nature of calcium cation interactions with phospholipid bilayers / $c A. Melcrová, S. Pokorna, S. Pullanchery, M. Kohagen, P. Jurkiewicz, M. Hof, P. Jungwirth, PS. Cremer, L. Cwiklik,
- 520 9_
- $a Understanding interactions of calcium with lipid membranes at the molecular level is of great importance in light of their involvement in calcium signaling, association of proteins with cellular membranes, and membrane fusion. We quantify these interactions in detail by employing a combination of spectroscopic methods with atomistic molecular dynamics simulations. Namely, time-resolved fluorescent spectroscopy of lipid vesicles and vibrational sum frequency spectroscopy of lipid monolayers are used to characterize local binding sites of calcium in zwitterionic and anionic model lipid assemblies, while dynamic light scattering and zeta potential measurements are employed for macroscopic characterization of lipid vesicles in calcium-containing environments. To gain additional atomic-level information, the experiments are complemented by molecular simulations that utilize an accurate force field for calcium ions with scaled charges effectively accounting for electronic polarization effects. We demonstrate that lipid membranes have substantial calcium-binding capacity, with several types of binding sites present. Significantly, the binding mode depends on calcium concentration with important implications for calcium buffering, synaptic plasticity, and protein-membrane association.
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a vápník $x metabolismus $7 D002118
- 650 _2
- $a vápníková signalizace $7 D020013
- 650 _2
- $a buněčná membrána $x metabolismus $7 D002462
- 650 _2
- $a lipidové dvojvrstvy $x chemie $x metabolismus $7 D008051
- 650 _2
- $a liposomy $x chemie $x metabolismus $7 D008081
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a fosfolipidy $x chemie $x metabolismus $7 D010743
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Pokorna, Sarka $u J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, Prague, 18223, Czech Republic.
- 700 1_
- $a Pullanchery, Saranya $u Department of Chemistry, Pennsylvania State University, University Park, PA 16802, United States.
- 700 1_
- $a Kohagen, Miriam $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, Prague, 16610, Czech Republic. Institute for Computational Physics, University of Stuttgart, Allmandring 3, Stuttgart, 70569, Germany.
- 700 1_
- $a Jurkiewicz, Piotr $u J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, Prague, 18223, Czech Republic.
- 700 1_
- $a Hof, Martin $u J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, Prague, 18223, Czech Republic.
- 700 1_
- $a Jungwirth, Pavel $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, Prague, 16610, Czech Republic. Department of Physics, Tampere University of Technology, POB 692, Tampere, FI-33101, Finland.
- 700 1_
- $a Cremer, Paul S $u Department of Chemistry, Pennsylvania State University, University Park, PA 16802, United States. Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, United States.
- 700 1_
- $a Cwiklik, Lukasz $u J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, Prague, 18223, Czech Republic. Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, Prague, 16610, Czech Republic.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 6, č. - (2016), s. 38035
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27905555 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20180709 $b ABA008
- 991 __
- $a 20180710094130 $b ABA008
- 999 __
- $a ok $b bmc $g 1317374 $s 1022164
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 6 $c - $d 38035 $e 20161201 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20180709