Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

A hybrid Q-learning sine-cosine-based strategy for addressing the combinatorial test suite minimization problem

KZ. Zamli, F. Din, BS. Ahmed, M. Bures,

. 2018 ; 13 (5) : e0195675. [pub] 20180517

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18033081

The sine-cosine algorithm (SCA) is a new population-based meta-heuristic algorithm. In addition to exploiting sine and cosine functions to perform local and global searches (hence the name sine-cosine), the SCA introduces several random and adaptive parameters to facilitate the search process. Although it shows promising results, the search process of the SCA is vulnerable to local minima/maxima due to the adoption of a fixed switch probability and the bounded magnitude of the sine and cosine functions (from -1 to 1). In this paper, we propose a new hybrid Q-learning sine-cosine- based strategy, called the Q-learning sine-cosine algorithm (QLSCA). Within the QLSCA, we eliminate the switching probability. Instead, we rely on the Q-learning algorithm (based on the penalty and reward mechanism) to dynamically identify the best operation during runtime. Additionally, we integrate two new operations (Lévy flight motion and crossover) into the QLSCA to facilitate jumping out of local minima/maxima and enhance the solution diversity. To assess its performance, we adopt the QLSCA for the combinatorial test suite minimization problem. Experimental results reveal that the QLSCA is statistically superior with regard to test suite size reduction compared to recent state-of-the-art strategies, including the original SCA, the particle swarm test generator (PSTG), adaptive particle swarm optimization (APSO) and the cuckoo search strategy (CS) at the 95% confidence level. However, concerning the comparison with discrete particle swarm optimization (DPSO), there is no significant difference in performance at the 95% confidence level. On a positive note, the QLSCA statistically outperforms the DPSO in certain configurations at the 90% confidence level.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033081
003      
CZ-PrNML
005      
20181010125444.0
007      
ta
008      
181008s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pone.0195675 $2 doi
035    __
$a (PubMed)29771918
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Zamli, Kamal Z $u IBM Centre of Excellence, Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang Lebuhraya Tun Razak, 26300 Kuantan, Pahang Darul Makmur, Malaysia.
245    12
$a A hybrid Q-learning sine-cosine-based strategy for addressing the combinatorial test suite minimization problem / $c KZ. Zamli, F. Din, BS. Ahmed, M. Bures,
520    9_
$a The sine-cosine algorithm (SCA) is a new population-based meta-heuristic algorithm. In addition to exploiting sine and cosine functions to perform local and global searches (hence the name sine-cosine), the SCA introduces several random and adaptive parameters to facilitate the search process. Although it shows promising results, the search process of the SCA is vulnerable to local minima/maxima due to the adoption of a fixed switch probability and the bounded magnitude of the sine and cosine functions (from -1 to 1). In this paper, we propose a new hybrid Q-learning sine-cosine- based strategy, called the Q-learning sine-cosine algorithm (QLSCA). Within the QLSCA, we eliminate the switching probability. Instead, we rely on the Q-learning algorithm (based on the penalty and reward mechanism) to dynamically identify the best operation during runtime. Additionally, we integrate two new operations (Lévy flight motion and crossover) into the QLSCA to facilitate jumping out of local minima/maxima and enhance the solution diversity. To assess its performance, we adopt the QLSCA for the combinatorial test suite minimization problem. Experimental results reveal that the QLSCA is statistically superior with regard to test suite size reduction compared to recent state-of-the-art strategies, including the original SCA, the particle swarm test generator (PSTG), adaptive particle swarm optimization (APSO) and the cuckoo search strategy (CS) at the 95% confidence level. However, concerning the comparison with discrete particle swarm optimization (DPSO), there is no significant difference in performance at the 95% confidence level. On a positive note, the QLSCA statistically outperforms the DPSO in certain configurations at the 90% confidence level.
650    12
$a algoritmy $7 D000465
650    _2
$a počítačová simulace $7 D003198
650    12
$a heuristika $7 D000066506
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Din, Fakhrud $u IBM Centre of Excellence, Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang Lebuhraya Tun Razak, 26300 Kuantan, Pahang Darul Makmur, Malaysia.
700    1_
$a Ahmed, Bestoun S $u Software Testing Intelligent Lab (STILL), Department of Computer Science, Faculty of Electrical Engineering Czech Technical University, Karlovo nam. 13, 121 35 Praha 2, Czech Republic.
700    1_
$a Bures, Miroslav $u Software Testing Intelligent Lab (STILL), Department of Computer Science, Faculty of Electrical Engineering Czech Technical University, Karlovo nam. 13, 121 35 Praha 2, Czech Republic.
773    0_
$w MED00180950 $t PloS one $x 1932-6203 $g Roč. 13, č. 5 (2018), s. e0195675
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29771918 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181010125934 $b ABA008
999    __
$a ok $b bmc $g 1340791 $s 1030075
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 13 $c 5 $d e0195675 $e 20180517 $i 1932-6203 $m PLoS One $n PLoS One $x MED00180950
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...