-
Je něco špatně v tomto záznamu ?
Semantic biclustering for finding local, interpretable and predictive expression patterns
J. Kléma, F. Malinka, F. Železný,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
BioMedCentral
od 2000-12-01
BioMedCentral Open Access
od 2000
Directory of Open Access Journals
od 2000
Free Medical Journals
od 2000
PubMed Central
od 2000
Europe PubMed Central
od 2000 do 2020
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2000-07-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2000-01-01
Medline Complete (EBSCOhost)
od 2000-01-01
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2000
Springer Nature OA/Free Journals
od 2000-12-01
- MeSH
- anotace sekvence MeSH
- data mining metody MeSH
- Drosophila melanogaster genetika MeSH
- sémantika * MeSH
- shluková analýza MeSH
- stanovení celkové genové exprese * MeSH
- strojové učení MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: One of the major challenges in the analysis of gene expression data is to identify local patterns composed of genes showing coherent expression across subsets of experimental conditions. Such patterns may provide an understanding of underlying biological processes related to these conditions. This understanding can further be improved by providing concise characterizations of the genes and situations delimiting the pattern. RESULTS: We propose a method called semantic biclustering with the aim to detect interpretable rectangular patterns in binary data matrices. As usual in biclustering, we seek homogeneous submatrices, however, we also require that the included elements can be jointly described in terms of semantic annotations pertaining to both rows (genes) and columns (samples). To find such interpretable biclusters, we explore two strategies. The first endows an existing biclustering algorithm with the semantic ingredients. The other is based on rule and tree learning known from machine learning. CONCLUSIONS: The two alternatives are tested in experiments with two Drosophila melanogaster gene expression datasets. Both strategies are shown to detect sets of compact biclusters with semantic descriptions that also remain largely valid for unseen (testing) data. This desirable generalization aspect is more emphasized in the strategy stemming from conventional biclustering although this is traded off by the complexity of the descriptions (number of ontology terms employed), which, on the other hand, is lower for the alternative strategy.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc18033261
- 003
- CZ-PrNML
- 005
- 20181009110142.0
- 007
- ta
- 008
- 181008s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s12864-017-4132-5 $2 doi
- 035 __
- $a (PubMed)29513193
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Kléma, Jiří $u Department of Computer Science, Czech Technical University in Prague, Karlovo náměstí 13, 121 35, Prague 2, Czech Republic. klema@fel.cvut.cz.
- 245 10
- $a Semantic biclustering for finding local, interpretable and predictive expression patterns / $c J. Kléma, F. Malinka, F. Železný,
- 520 9_
- $a BACKGROUND: One of the major challenges in the analysis of gene expression data is to identify local patterns composed of genes showing coherent expression across subsets of experimental conditions. Such patterns may provide an understanding of underlying biological processes related to these conditions. This understanding can further be improved by providing concise characterizations of the genes and situations delimiting the pattern. RESULTS: We propose a method called semantic biclustering with the aim to detect interpretable rectangular patterns in binary data matrices. As usual in biclustering, we seek homogeneous submatrices, however, we also require that the included elements can be jointly described in terms of semantic annotations pertaining to both rows (genes) and columns (samples). To find such interpretable biclusters, we explore two strategies. The first endows an existing biclustering algorithm with the semantic ingredients. The other is based on rule and tree learning known from machine learning. CONCLUSIONS: The two alternatives are tested in experiments with two Drosophila melanogaster gene expression datasets. Both strategies are shown to detect sets of compact biclusters with semantic descriptions that also remain largely valid for unseen (testing) data. This desirable generalization aspect is more emphasized in the strategy stemming from conventional biclustering although this is traded off by the complexity of the descriptions (number of ontology terms employed), which, on the other hand, is lower for the alternative strategy.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a shluková analýza $7 D016000
- 650 _2
- $a data mining $x metody $7 D057225
- 650 _2
- $a Drosophila melanogaster $x genetika $7 D004331
- 650 12
- $a stanovení celkové genové exprese $7 D020869
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a anotace sekvence $7 D058977
- 650 12
- $a sémantika $7 D012660
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Malinka, František $u Department of Computer Science, Czech Technical University in Prague, Karlovo náměstí 13, 121 35, Prague 2, Czech Republic.
- 700 1_
- $a Železný, Filip $u Department of Computer Science, Czech Technical University in Prague, Karlovo náměstí 13, 121 35, Prague 2, Czech Republic.
- 773 0_
- $w MED00008181 $t BMC genomics $x 1471-2164 $g Roč. 18, Suppl 7 (2017), s. 752
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29513193 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20181008 $b ABA008
- 991 __
- $a 20181009110630 $b ABA008
- 999 __
- $a ok $b bmc $g 1340075 $s 1030255
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 18 $c Suppl 7 $d 752 $e 20171016 $i 1471-2164 $m BMC genomics $n BMC Genomics $x MED00008181
- LZP __
- $a Pubmed-20181008